Effects on the properties of cementitious composites using waste glass powder (WGP) as a partial replacement for cement

a systematic review

Authors

  • Jéssica Machado Santiago Instituto Federal do Piauí - IFPI https://orcid.org/0000-0003-2668-0289
  • Fabio de Souza Clementino Instituto Federal do Piauí - IFPI https://orcid.org/0000-0003-2138-3701
  • Italo Gutierry Carneiro da Conceição Instituto Federal do Piauí - IFPI
  • Heitor Fernandes de Sousa Federal Institute of Piaui
  • Hudson Chagas dos Santos Federal Institute of Piaui

DOI:

https://doi.org/10.31686/ijier.vol10.iss1.3619

Keywords:

properties, glass, cement, WGP, SCM

Abstract

The use of waste glass powder (WGP) as a supplementary cementitious material (SCM) rich in pozzolan as a partial replacement for cement has been a viable alternative, from the environmental and economic point of view, to solve problems caused by the high consumption of cement worldwide. Therefore, the objective of this study was to evaluate the effects of the use of WGP, when used as a partial cement substitute, in some properties of cementitious composites (pastes, mortars and concretes), in the fresh and hardened state. Through a systematic literature review, 23 experimental research articles obtained from the world-renowned Science Direct database were analyzed. The results obtained from this review indicate improvements in some properties of cementitious composites with WGP, such as increased compressive strength at advanced ages, increased thermal neutron shielding capacity, reduced penetration of sulfate and chloride ions, mitigation of alkali-silica reaction, reduced thermal conductivity, improved mechanical and chemical properties, including the formation of a new crystalline phase (devitrite) when exposed to high temperatures, reductions in air entrapment, water absorption and porosity. Regarding workability, there was no consensus, however, regardless of the substitution content, all composites were within the slump limits. Therefore, it can be concluded that the use of WGP in cementitious materials produces beneficial effects on some properties of cementitious composites.

Downloads

Download data is not yet available.

Author Biographies

  • Jéssica Machado Santiago, Instituto Federal do Piauí - IFPI

    Dept. Materials Engineering

  • Fabio de Souza Clementino, Instituto Federal do Piauí - IFPI

    Dept. Materials Engineering

  • Italo Gutierry Carneiro da Conceição, Instituto Federal do Piauí - IFPI

    Dept. Materials Engineering

  • Heitor Fernandes de Sousa , Federal Institute of Piaui

    Dept. Materials Engineering

  • Hudson Chagas dos Santos, Federal Institute of Piaui

    Dept. Materials Engineering

References

ABNT: Associação Brasileira de Normas Técnicas. NBR 12653: Materiais pozolânicos: requisitos. Rio de Janeiro: ABNT; 2015. (In Portuguese).

ASTM: American Society for Testing and Materials. ASTM C125 – 10a: Standard Terminology Relating to Concrete and Concrete Aggregates. West Conshohocken: ASTM; 2010.

ASTM: American Society for Testing and Materials. ASTM C143, Standard test method for slump of hydraulic cement concrete. West Conshohocken: ASTM; 2010.

ASTM: American Society for Testing and Materials. ASTM C618–19. Standard specification for Coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken: ASTM; 2010.

ASTM: American Society for Testing and Materials. ASTM C1202–05, Electrical indication of concrete’s ability to resist chloride ion penetration. West Conshohocken: ASTM; 2005.

ASTM: American Society for Testing and Materials. ASTM C1260-14. Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method). West Conshohocken: ASTM; 2014.

Du, H., & Tan, K. H. (2017). Properties of high volume glass powder concrete. Cement and Concrete Composites, 75, 22–29. doi:10.1016/j.cemconcomp.2016.10.010. DOI: https://doi.org/10.1016/j.cemconcomp.2016.10.010

Du, Y., Yang, W., Ge, Y., Wang, S., & Liu, P. (2021). Thermal conductivity of cement paste containing waste glass powder, metakaolin and limestone filler as supplementary cementitious material. Journal of Cleaner Production, 125018. doi:10.1016/j.jclepro.2020.125018. DOI: https://doi.org/10.1016/j.jclepro.2020.125018

Harbec, D., Zidol, A., Tagnit-Hamou, A., & Gitzhofer, F. (2017). Mechanical and durability properties of high performance glass fume concrete and mortars. Construction and Building Materials, 134, 142–156. doi:10.1016/j.conbuildmat.2016.12.018. DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.018

He, Z., Zhan, P., Du, S., Liu, B., & Yuan, W. (2019). Creep behavior of concrete containing glass powder. Composites Part B: Engineering, 166, 13–20. doi:10.1016/j.compositesb.2018.11.133. DOI: https://doi.org/10.1016/j.compositesb.2018.11.133

Higuchi, A. M. D., Marques, M. G. S., Ribas, L. F., & Vasconcelos, R. P. (2021). Use of glass powder residue as an eco-efficient supplementary cementitious material. Construction and Building Materials, 304, 124640. doi:10.1016/j.conbuildmat.2021.124640. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124640

Hilton, B., Bawden, K., Winnebeck, K., Chandrasiri, C., Ariyachandra, E., & Peethamparan, S. (2019). The functional and environmental performance of mixed cathode ray tubes and recycled glass as partial replacement for cement in concrete. Resources, Conservation and Recycling, 151, 104451. doi:10.1016/j.resconrec.2019.104451. DOI: https://doi.org/10.1016/j.resconrec.2019.104451

IEA - International Energy Agency, 2018. Technology Roadmap: Low-Carbon Transition in the Cement Industry. World Business Council for Sustainable Development, Paris. Available in: https://iea.blob.core.windows.net/assets/cbaa3da1-fd61-4c2a-8719-31538f59b54f/TechnologyRoadmapLowCarbonTransitionintheCementIndustry.pdf. (Accessed November 29, 2021). DOI: https://doi.org/10.1787/f6daa4a0-en

Islam, G. M. S., Rahman, M. H., & Kazi, N. (2017). Waste glass powder as partial replacement of cement for sustainable concrete practice. International Journal of Sustainable Built Environment, 6(1), 37–44. doi:10.1016/j.ijsbe.2016.10.005. DOI: https://doi.org/10.1016/j.ijsbe.2016.10.005

Ibrahim, K. I. M. (2021). Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash. Case Studies in Construction Materials, 15, e00630. doi:10.1016/j.cscm.2021.e00630. DOI: https://doi.org/10.1016/j.cscm.2021.e00630

Ibrahim, S., & Meawad, A. (2018). Assessment of waste packaging glass bottles as supplementary cementitious materials. Construction and Building Materials, 182, 451–458. doi:10.1016/j.conbuildmat.2018.06.119. DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.119

Jochem, L. F., Casagrande, C. A., Onghero, L., Venâncio, C., & Gleize, P. J.P. (2021). Effect of partial replacement of the cement by glass waste on cementitious pastes. Construction and Building Materials, 273, 121704. doi:10.1016/j.conbuildmat.2020.121704. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121704

Kajaste, R., & Hurme, M. (2016). Cement industry greenhouse gas emissions – management options and abatement cost. Journal of Cleaner Production, 112, 4041–4052. doi:10.1016/j.jclepro.2015.07.055. DOI: https://doi.org/10.1016/j.jclepro.2015.07.055

Kim, S. K., & Yang, H. J. (2021). Utilization of liquid crystal display (LCD) waste glass powder as cementitious binder in mortar for enhancing neutron shielding performance. Construction and Building Materials, 270, 121859. doi:10.1016/j.conbuildmat.2020.121859. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121859

Lee, H., Hanif, A., Usman, M., Sim, J., & Oh, H. (2018). Performance evaluation of concrete incorporating glass powder and glass sludge wastes as supplementary cementing material. Journal of Cleaner Production, 170, 683–693. doi:10.1016/j.jclepro.2017.09.133 DOI: https://doi.org/10.1016/j.jclepro.2017.09.133

Li, B., Ling, T.-C., Yu, J.-G., Wu, J., & Chen, W. (2019). Cement pastes modified with recycled glass and supplementary cementitious materials: Properties at the ambient and high temperatures. Journal of Cleaner Production, 118155. doi:10.1016/j.jclepro.2019.118155. DOI: https://doi.org/10.1016/j.jclepro.2019.118155

Liu, G., Florea, M. V. A., & Brouwers, H. J. H. (2019). Performance evaluation of sustainable high strength mortars incorporating high volume waste glass as binder. Construction and Building Materials, 202, 574–588. doi:10.1016/j.conbuildmat.2018.12.110. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.110

Higuchi, A. M. D., Marques, M. G. S., Ribas, L. F., & Vasconcelos, R. P. (2021). Use of glass powder residue as an eco-efficient supplementary cementitious material. Construction and Building Materials, 304, 124640. doi:10.1016/j.conbuildmat.2021.124640. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124640

Meesak, T., & Sujjavanich, S. (2019). Effectiveness of 3 different supplementary cementitious materials in mitigating alkali silica reaction. Materials Today: Proceedings, 17, 1652–1657. doi:10.1016/j.matpr.2019.06.195. DOI: https://doi.org/10.1016/j.matpr.2019.06.195

Moradllo, M. K., Chung, C.-W., Keys, M. H., Choudhary, A., Reese, S. R., & Weiss, W. J. (2020). Use of borosilicate glass powder in cementitious materials: Pozzolanic reactivity and neutron shielding properties. Cement and Concrete Composites, 103640. doi:10.1016/j.cemconcomp.2020.103640. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103640

Nahi, S., Leklou, N., Khelidj, A., Oudjit, M. N., & Zenati, A. (2020). Properties of cement pastes and mortars containing recycled green glass powder. Construction and Building Materials, 262, 120875. doi:10.1016/j.conbuildmat.2020.12. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120875

Pitarch, A. M., Reig, L., Gallardo, A., Soriano, L., Borrachero, M. V., & Rochina, S. (2021). Reutilisation of hazardous spent fluorescent lamps glass waste as supplementary cementitious material. Construction and Building Materials, 292, 123424. doi:10.1016/j.conbuildmat.2021.123424. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123424

Rodier, L., & Savastano, H. (2018). Use of glass powder residue for the elaboration of eco-efficient cementitious materials. Journal of Cleaner Production, 184, 333–341. doi:10.1016/j.jclepro.2018.02.269. DOI: https://doi.org/10.1016/j.jclepro.2018.02.269

Tayeh, B. A., Saffar, D. M. A., Aadi, A. S., & Almeshal, I. (2019). Sulphate resistance of cement mortar contains glass powder. Journal of King Saud University - Engineering Sciences. doi:10.1016/j.jksues.2019.07.002. DOI: https://doi.org/10.1016/j.jksues.2019.07.002

Wang, Y., Li, J., He, X., Zheng, Z., Su, Y., Zhao, H., … Strnadel, B. (2020). Effects of wet-grinded superfine waste glass on the fresh properties and reaction characteristic of cement pastes. Construction and Building Materials, 247, 118593. doi:10.1016/j.conbuildmat.2020.118593. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118593

Yang, H. J., Usman, M., & Hanif, A. (2021). Suitability of liquid crystal display (LCD) glass waste as supplementary cementing material (SCM): Assessment based on strength, porosity, and durability. Journal of Building Engineering, 42, 102793. doi:10.1016/j.jobe.2021.102793. DOI: https://doi.org/10.1016/j.jobe.2021.102793

Yang, S., Lu, J.-X., & Poon, C. S. (2021). Recycling of waste glass in cement mortars: Mechanical properties under high temperature loading. Resources, Conservation and Recycling, 174, 105831. doi:10.1016/j.resconrec.2021.105831. DOI: https://doi.org/10.1016/j.resconrec.2021.105831

Downloads

Published

2022-01-01

How to Cite

Santiago, J. M., Clementino, F. de S., Conceição, I. G. C. da, Sousa , H. F. de, & Santos, H. C. dos. (2022). Effects on the properties of cementitious composites using waste glass powder (WGP) as a partial replacement for cement: a systematic review. International Journal for Innovation Education and Research, 10(1), 307-324. https://doi.org/10.31686/ijier.vol10.iss1.3619
Received 2021-12-05
Accepted 2022-01-01
Published 2022-01-01

Most read articles by the same author(s)