Safety profile and prevention of cognitive deficit in alzheimer’s disease model of graphene family nanomaterials, Tucuma oil (Astrocaryum Vulgare) and its synergisms

Authors

DOI:

https://doi.org/10.31686/ijier.vol10.iss3.3694

Keywords:

cell viability, computational simulations, graphene oxide, nanotoxicology, reduced graphene oxide, memory

Abstract

Alzheimer's disease is a worldwide health issue, and there are currently no treatments that can stop this disease. Oxidized graphene derivatives have gained prominence in use in biological systems due to their excellent physical-chemical characteristics, biocompatibility and ability to overcome the blood-brain barrier. Other substances highlighted are those of natural origin from the Amazon biome, such as tucuma, a fruit whose oil has been widely studied in therapeutic applications. Thus, the aim of this study was to investigate the action of graphene oxide, reduced graphene oxide and tucuma oil, isolated and combined, as an alternative for treatment of Alzheimer's disease through studies in silico, in vitro, in vivo and ex vivo. Computational simulation via docking was used to verify the affinity of the substances with the proteins β-amyloid and acetylcholinesterase, in which the reduced graphene oxide was the one that showed the most favorable interaction. The results of the ab initio simulation showed that the synergism between the nanostructures and the oil occurs through physical adsorption. The experimental results revealed that the substances and their combinations were nontoxic, both at the cellular and systemic level. In general, all treatments had positive results against induced memory deficit, but reduced graphene oxide was the most prominent, as it was able to protect against memory damage in all behavioral tests performed, with anticholinesterase activity and antioxidant effect. In conclusion, the reduced graphene oxide is, among the treatments studied, the one with great therapeutic potential to be investigated in the treatment of this disease.

Downloads

Download data is not yet available.

Author Biographies

  • Patricia Ferreira Schopf, Franciscan University

    Postgraduate Program in Nanosciences

  • Mikaela Peglow Pinz, Universidade Federal de Pelotas

    Graduate Program in Biochemistry and Bioprospecting, Laboratory of Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil

  • Ketlyn Pereira da Motta, Universidade Federal de Pelotas

    Graduate Program in Biochemistry and Bioprospecting, Laboratory of Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil

  • Vitor Pereira Klein, Franciscan University

    Biomedicine Course

  • Alencar Kolinski Machado, Franciscan University

    Postgraduate Program in Nanosciences

  • Cristiano Rodrigo Bohn Rhoden, Franciscan University

    Postgraduate Program in Nanosciences

  • Ethel Antunes Wilhelm, Universidade Federal de Pelotas

    Graduate Program in Biochemistry and Bioprospecting, Laboratory of Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil

  • Cristiane Luchese, Universidade Federal de Pelotas

    Graduate Program in Biochemistry and Bioprospecting, Laboratory of Biochemical Pharmacology (LaFarBio), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil

  • Ivana Zanella, Franciscan University

    Postgraduate Program in Nanosciences.

  • Michele Sagrillo, Universidade Franciscana

    Postgraduate Program in Nanosciences

References

Aguiar, J. P. L., 1996. Tabela de composição de alimentos da Amazônia. Acta Amaz. 26, 121-126. DOI: https://doi.org/10.1590/1809-43921996261126

Baldissera, M. D. et al., 2017. Antihyperglycemic, antioxidant activities of tucuma oil (Astrocaryum vulgare) in alloxan-induced diabetic mice, and identification of fatty acid profile by gas chromatograph: New natural source to treat hyperglycemia. Chem. Biol. Interact. 270, 51-58. https://doi.org/10.1016/j.cbi.2017.04.001 DOI: https://doi.org/10.1016/j.cbi.2017.04.001

Bianco, A., 2013. Graphene: Safe or Toxic? The Two Faces of the Medal. Angew. Chem. 52, 4986-4997. https://doi.org/10.1002/anie.201209099 DOI: https://doi.org/10.1002/anie.201209099

Bermam, H. M. et al., 2000. The protein data bank. Nucleic Acids Res. 28, 235-242. https://doi.org/10.1093/nar/28.1.235 DOI: https://doi.org/10.1093/nar/28.1.235

Bony, E. et al., 2012. Awara (Astrocaryum vulgare M.) pulp oil: Chemical characterization, and anti-inflammatory properties in a mice model of endotoxic shock and a rat model of pulmonary inflammation. Fitoterapia 83, 33-43. https://doi.org/10.1016/j.fitote.2011.09.007 DOI: https://doi.org/10.1016/j.fitote.2011.09.007

Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/j.cj.2017.04.003 DOI: https://doi.org/10.1016/0003-2697(76)90527-3

Butterfield, D. A, Halliwell, B., 2019. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148-160. https://doi.org/10.1038/s41583-019-0132-6 DOI: https://doi.org/10.1038/s41583-019-0132-6

Chen, Y. et al., 2012. Graphene and its derivatives: switching ON and OFF. Chem. Soc. Rev. 41, 4688-4707. https://doi.org/10.1039/C2CS35043B DOI: https://doi.org/10.1039/c2cs35043b

Cheung, J. et al., 2012. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 55, 10282-10286. https://doi.org/10.1021/jm300871x DOI: https://doi.org/10.1021/jm300871x

De Rosso, W., Mercadante, A. Z., 2007. Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J. Agr. Food Chem. 55, 5062-5072. https://doi.org/10.1021/jf0705421 DOI: https://doi.org/10.1021/jf0705421

Dick, M. K.; Limaiem, F., 2019. Histology, Fibroblast. StatPearls, NCBI Bookshelf: Treasure Island.

Dreyer, D. R. et al., 2010. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228-240. https://doi.org/10.1039/B917103G DOI: https://doi.org/10.1039/B917103G

Durruthy, M. G. et al., 2017. Decrypting Strong and Weak Single-Walled Carbon Nanotubes Interactions with Mitochondrial Voltage-Dependent Anion Channels Using Molecular Docking and Perturbation Theory. Sci. Rep. 7, 1-19. https://doi.org/10.1038/s41598-017-13691-8 DOI: https://doi.org/10.1038/s41598-017-13691-8

Ellman, G. L. et al., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88-95. https://doi.org/10.1016/0006-2952(61)90145-9 DOI: https://doi.org/10.1016/0006-2952(61)90145-9

Feinstein, W. P.; Brylinski, M., 2015. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J. Cheminformatics 7, 7-18. https://doi.org/10.1186/s13321-015-0067-5 DOI: https://doi.org/10.1186/s13321-015-0067-5

Ferreira, E. S. et al., 2008. Caracterização físico-química do fruto e do óleo extraído de tucumã (astrocaryum vulgare mart). Alimentos e Nutrição 19, 427-433.

Forli, S. et al., 2016. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 11, 905-919. https://doi.org/10.1038/nprot.2016.051 DOI: https://doi.org/10.1038/nprot.2016.051

Fraczek-Szczypta, A. Jantas, D. Ciepiela, F. Grzonka, J. Bernasik, A. Marze, Carbon nanomaterials coatings–properties and influence on nerve cells response. Diam Relat Mater, 84 (2018) 127-140. https://doi.org/10.1016/j.diamond.2018.03.017 DOI: https://doi.org/10.1016/j.diamond.2018.03.017

Fronza, M. G. et al., 2019. Rational design, cognition and neuropathology evaluation of QTC-4-MeOBnE in a streptozotocin-induced mouse model of sporadic Alzheimer’s disease. Sci. Rep. 9, 1-14. https://doi.org/10.1038/s41598-019-43532-9 DOI: https://doi.org/10.1038/s41598-019-43532-9

Georgakilas, V., Perman, J. A., Tucek, J., & Zboril, R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chemical reviews, v. 115, n. 11, p. 4744-4822, 2015. https://pubs.acs.org/doi/full/10.1021/cr500304f DOI: https://doi.org/10.1021/cr500304f

Graham, M. L.; Prescott, M. J., 2015. The multifactorial role of the 3Rs in shifting the harmbenefit analysis in animal models of disease. Eur. J. Pharmacol. 759, 19-29. https://doi.org/10.1016/j.ejphar.2015.03.040 DOI: https://doi.org/10.1016/j.ejphar.2015.03.040

Grieb, P., 2016. Intracerebroventricular Streptozotocin Injections as a Model of Alzheimer’s Disease: in Search of a Relevant Mechanism. Mol. Neurobiol. 53, 1741- 1752. https://doi.org/10.1007/s12035-015-9132-3 DOI: https://doi.org/10.1007/s12035-015-9132-3

Guo, X.; Mei, N., 2014. Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 22, 105- 115. https://doi.org/10.1016/j.jfda.2014.01.009 DOI: https://doi.org/10.1016/j.jfda.2014.01.009

Haley, T. J.; Mccormick, W. G., 1957. Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol. Chemother 12, 12-15. https://doi.org/10.1111/j.1476-5381.1957.tb01354.x DOI: https://doi.org/10.1111/j.1476-5381.1957.tb01354.x

He, Z. et al., 2016. The structural development of primary cultured hippocampal neurons on a graphene substrate. Colloids Surf. B: Biointerfaces 146, 442-451. https://doi.org/10.1016/j.colsurfb.2016.06.045 DOI: https://doi.org/10.1016/j.colsurfb.2016.06.045

Jiménez, J. et al., 2017. DeepSite: protein-binding site predictor using 3D-convulation neural networks. Bioinformatics 33, 3036-3042. https://doi.org/10.1093/bioinformatics/btx350 DOI: https://doi.org/10.1093/bioinformatics/btx350

Krishna, I. V. et al., 2009. Cytotoxic studies of anti-neoplastic drugs on human lymphocytes - In vitro studies. Cancer Biomark. 5, 261-272. https://doi.org/10.3233/CBM-2009-0111 DOI: https://doi.org/10.3233/CBM-2009-0111

Laskowski, R. M.; Swindells, M. B., 2011. LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 51, 2778-2786. https://doi.org/10.1021/ci200227u DOI: https://doi.org/10.1021/ci200227u

Lerf, A. et al., 1998. Structure of Graphite Oxide Revisited. J. Phys. Chem. B 102, 4477-4482. https://doi.org/10.1021/jp9731821 DOI: https://doi.org/10.1021/jp9731821

Lima, D. A. 2008. Tratamento farmacológico da doença de Alzheimer. Braz. J. Health Biomed. Sci. 7, 78-87.

Loetchutinat, C. et al., 2005. Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′,7′-dichlorofluorescein diacetate assay. Radiat. Phys. Chem. 72, 323-331. https://doi.org/10.1016/j.radphyschem.2004.06.011 DOI: https://doi.org/10.1016/j.radphyschem.2004.06.011

Reina, G., González-Domínguez, J. M., Criado, A., Vázquez, E., Bianco, A., & Prato, M. Promises, facts and challenges for graphene in biomedical applications. Chemical Society Reviews, v. 46, n. 15, p. 4400-4416, 2017. https://pubs.rsc.org/no/content/articlehtml/2017/cs/c7cs00363c DOI: https://doi.org/10.1039/C7CS00363C

MacKay, E. M.; MacKay, L. L., 1927. The Concentration of Urea in the Blood of Normal Individuals 1. J Clin. Invest. 4, 295-306. https://doi.org/10.1172/jci100124 DOI: https://doi.org/10.1172/JCI100124

Martini, F. et al., 2019. A multifunctional compound ebselen reverses memory impairment, apoptosis and oxidative stress in a mouse model of sporadic Alzheimer’s disease. J Psychiatr. Res. 109, 107-117. https://doi.org/10.1016/j.jpsychires.2018.11.021 DOI: https://doi.org/10.1016/j.jpsychires.2018.11.021

Masoumi, J. et al., 2018. Apelin, a promising target for Alzheimer disease prevention and treatment. Neuropeptides 70, 76-86. https://doi.org/10.1016/j.npep.2018.05.008 DOI: https://doi.org/10.1016/j.npep.2018.05.008

Mendonça, M. C. P. et al., 2015. Reduced graphene oxide induces transient blood-brain barrier opening: an in vivo study. J. Nanobiotechnology 13, 1-13. https://doi.org/10.1186/s12951-015-0143-z DOI: https://doi.org/10.1186/s12951-015-0143-z

Mendonça, M. C. P. et al., 2016. Reduced graphene oxide: nanotoxicological profile in rats. J Nanobiotechnology 14, 1-13. https://doi.org/10.1186/s12951-016-0206-9 DOI: https://doi.org/10.1186/s12951-016-0206-9

Misra, H. P.; Fridovich, I., 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dis- mutase. J Biol Chem 247, 3170-3175. http://www.jbc.org/content/ 247/10/3170 DOI: https://doi.org/10.1016/S0021-9258(19)45228-9

Mokrani, E. H. et al., 2019. Identification of New Potent Acetylcholinesterase Inhibitors Using Virtual Screening and in vitro Approaches. Mol. Inform. 38, 1-11. https://doi.org/10.1002/minf.201800118 DOI: https://doi.org/10.1002/minf.201800118

Nascimento, K. et al., 2019. Phytochemical analysis and evaluation of the antioxidant and antiproliferative effects of Tucumã oil nanocapsules in breast adenocarcinoma cells (MCF-7). Nat. Prod. Res., 1-6. DOI: https://doi.org/10.1080/14786419.2019.1648460

National Research Council, 1996. Guide for the Care and Use of Laboratory Animals. The National Academies Press, Washington (DC).

Nobili, A. et al., 2017. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat. Commun. 8, 1-14. DOI: https://doi.org/10.1038/ncomms14727

Ohkawa, H.; Ohishi, N.; Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358. https://doi.org/10.1016/0003-2697(79)90738-3 DOI: https://doi.org/10.1016/0003-2697(79)90738-3

Passini, E. et al., 2017. Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity. Front. Physiol. 8, 1-15. https://doi.org/10.3389/fphys.2017.00668 DOI: https://doi.org/10.3389/fphys.2017.00668

Pinz, M. P. et al., 2021. Effect of a purine derivative containing selenium to improve memory decline and anxiety through modulation of the cholinergic system and Na+/K+-ATPase in an Alzheimer’s disease model. Metab. Brain Dis. 36, 871-888. https://doi.org/10.1007/s11011-021-00703-w DOI: https://doi.org/10.1007/s11011-021-00703-w

Poirier, J., Gauthier, S. 2016. Doença de Alzheimer: o guia completo. São Paulo: MG Editores, 176 p.

Reddy, S. et al., 2018. Allotropic carbon (graphene oxide and reduced graphene oxide) based biomaterials for neural regeneration. Curr. Opin. Biomed. Eng. 6, 120-129. https://doi.org/10.1016/j.cobme.2018.05.001 DOI: https://doi.org/10.1016/j.cobme.2018.05.001

Reitman, S.; Frankel, S., 1957. A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Am. J Clin. Pathol. 28, 56-63. https://doi.org/10.1093/ajcp/28.1.56 DOI: https://doi.org/10.1093/ajcp/28.1.56

Rosas, J. J. H. et al., 2011. First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide. J. Mol. Model. 17, 1133-1139. https://doi.org/10.1007/s00894-010-0818-1 DOI: https://doi.org/10.1007/s00894-010-0818-1

Salles, T. R. Rodrigues, H. B. Bruckmann, F. S. Alves, L. C. S. Mortari, S. R. Rhoden, C. R. B, Graphene oxide optimization synthesis for application on laboratory of Universidade Franciscana, Discip. sci., Ser. cienc. nat. tecnol. 21 (2020) 15-26. https://doi.org/10.37779/nt.v21i3.3632 DOI: https://doi.org/10.37779/nt.v21i3.3632

Sakaguchi, M. et al., 2006. Effects of systemic administration of beta-casomorphin-5 on learning and memory in mice. Eur. J. Pharmacol. 530, 81-87. https://doi.org/10.1016/j.ejphar.2005.11.014 DOI: https://doi.org/10.1016/j.ejphar.2005.11.014

Sarter, M.; Bodewitz, G.; Stephens, D. N., 1988. Attenuation of scopolamine induced impairment of spontaneous alternation behavior by antagonist but not inverse agonist and bcarboline. Psychopharmacol. 94, 491-495. https://doi.org/10.1007/BF00212843 DOI: https://doi.org/10.1007/BF00212843

Serlin, Y. et al., 2015. Anatomy and Physiology of the Bloond-Brain Barrier. Semin. Cell Dev. Biol. 38, 2-6. https://doi.org/10.1016/j.semcdb.2015.01.002 DOI: https://doi.org/10.1016/j.semcdb.2015.01.002

Servant, A. et al., 2014. Graphene for multi-functional synthetic biology: the last 'zeitgeist' in nanomedicine. Bioorg. Med. Chem. Lett. 24, 1638-1649. https://doi.org/10.1016/j.bmcl.2014.01.051 DOI: https://doi.org/10.1016/j.bmcl.2014.01.051

Shanley, P.; Serra, M.; Medina, G., 2010. Frutíferas e plantas úteis na vida amazônica. 2 ed. Belém: CIFOR, Imazon.

Silveira, C. H. et al., 2009. Protein cutoff scanning: A comparative analysis of cutoff dependent and cutoff free methods for prospecting contacts in proteins. Proteins: Struct., Funct., Bioinf. 74, 727-743. https://doi.org/10.1002/prot.22187 DOI: https://doi.org/10.1002/prot.22187

Singh, D. P. et al., 2018. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Mat. Sci. Eng. C 86, 173-197. https://doi.org/10.1016/j.msec.2018.01.004 DOI: https://doi.org/10.1016/j.msec.2018.01.004

Soler, J. M. et al., 2002. The SIESTA method for ab initio order-N materials simulation. Chem. Rev. 14, 2745-2779. https://doi.org/10.1088/0953-8984/14/11/302 DOI: https://doi.org/10.1088/0953-8984/14/11/302

Stangherlin, E. C.; Rocha, J. B.; Nogueira, C. W., 2009. Diphenyl ditelluride impairs short-term memory and alters neurochemical parameters in young rats. Pharmacol. Biochem. Behav. 91, 430-435. https://doi.org/10.1016/j.pbb.2008.08.020 DOI: https://doi.org/10.1016/j.pbb.2008.08.020

Trott, O.; Olson, A. J., 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461. DOI: https://doi.org/10.1002/jcc.21334

https://doi.org/10.1002/jcc.21334 DOI: https://doi.org/10.1002/jcc.21334

Varadarajan, S. et al., 2001. Different Mechanisms of Oxidative Stress and Neurotoxicity for Alzheimer‘s Aβ(1−42) and Aβ(25−35). J. Am. Chem. Soc. 123, 5625-5631. https://doi.org/10.1021/ja010452r DOI: https://doi.org/10.1021/ja010452r

Viana, A. R. Salles, B. Bruckmann, F. S. Krause, L. M. F. Mortari, S. R. Rhoden, C. R. B, Cytotoxicity study of graphene oxide against vero lineage cells, Discip. sci., Ser. cienc. nat. tecnol. 20 (2019) 355-364. https://doi.org/10.37779/nt.v20i3.2981

Walsh, R. N.; Cummins, R. A., 1976. The open-field test: a critical review. Psychol. Bull. 83, 482-504. https://doi.org/10.1037/0033-2909.83.3.482 DOI: https://doi.org/10.1037/0033-2909.83.3.482

Wang, Y. et al., 2016. Pubchem BioAssay: 2017 update. Nucleic Acids Res. 45, 955-963. https://doi.org/10.1093/nar/gkw1118 DOI: https://doi.org/10.1093/nar/gkw1118

Yildirimer, L. et al., 2011. Toxicology and clinical potential of nanoparticles. Nanotoday 6, 585-607. https://doi.org/10.1016/j.nantod.2011.10.001 DOI: https://doi.org/10.1016/j.nantod.2011.10.001

Yuyama, L. K. O. et al., 2008. Processing and evaluation of the shelf-life of tucumã (Astrocaryum aculeatum Meyer) dehydrated and pulverized. Technological Science food. 28, 408-412. https://doi.org/10.1590/S0101-20612008000200021 DOI: https://doi.org/10.1590/S0101-20612008000200021

Downloads

Published

2022-03-01

How to Cite

Ferreira Schopf, P. ., Peglow Pinz, M. ., Pereira da Motta, K. ., Klein, V. P., Kolinski Machado, A. ., Rhoden, C. R. B., Wilhelm, E. A., Luchese, C., Zanella, I., & Sagrillo, M. (2022). Safety profile and prevention of cognitive deficit in alzheimer’s disease model of graphene family nanomaterials, Tucuma oil (Astrocaryum Vulgare) and its synergisms. International Journal for Innovation Education and Research, 10(3), 267-303. https://doi.org/10.31686/ijier.vol10.iss3.3694
Received 2022-02-15
Accepted 2022-03-06
Published 2022-03-01

Most read articles by the same author(s)