Graphene oxide and reduced graphene oxide

From preparation to verification of safety and therapeutic efficacy in Silico and in Vitro

Authors

DOI:

https://doi.org/10.31686/ijier.vol9.iss12.3572

Keywords:

Nanoparticles, Cicatrization, Anti-inflammatory, Antimicrobial

Abstract

To present a possible new alternative for wound treatment, this work evaluated the biological safety and therapeutic efficacy of graphene oxide (GO) and reduced graphene oxide (rGO) nanoparticles (NPs). First, the nanostructures were studied in silico and showed to be able to inhibit the production of some pro-inflammatory cytokines and stimulate the production of the anti-inflammatory cytokine IL-10, especially rGO. The results of the morphological and structural characterization of GO NPs synthesized from the Hummers method and reduced by ascorbic acid, were consistent with the literature, confirming their achievement. In the broth microdilution assay, GO and rGO showed antimicrobial activity against the clinical isolate of Streptococcus agalactiae (S. agalactiae) at a minimum inhibitory concentration (MIC) of 625 µg/mL for GO and 312.5 µg/mL for rGO. In addition, the nanostructure of rGO was able to inhibit, in subinhibitory concentration, the formation of S. agalactiae biofilm by up to 77% when compared to the positive control. Both NPs, in all tested concentrations, did not cause hemolysis, and alterations in coagulation in vitro assays. However, in the safety tests, it was evidenced that only the MIC of 312, µg/mL for rGO was biologically safe and presented anti-inflammatory and healing behavior in vitro. In general, the present work confirmed rGO's potential in the treatment of chronic wounds, since in silico showed anti-inflammatory behavior and in vitro showed therapeutic efficacy at low concentrations, prevented biofilm formation, and showed no significant toxic effects.

Downloads

Download data is not yet available.

Author Biographies

  • Pâmella Schramm Oliveira, Franciscan University

     Graduate Program of Biomedical engineering.

  • Aline Rossato, Franciscan University

    Graduate Program in Nanosciences

  • Larissa da Silva Silveira, Franciscan University

    Graduate Program in Nanosciences.

  • Cristian Mafra Ledur, Franciscan University

    Graduate Program in Nanosciences.

  • Walter Paixão de Sousa Filho, Franciscan University

    bGraduate Program in Nanosciences.

  • Claudir Gabriel Kaufmann Junior, Federal University of Rio Grande do Sul

    Post Graduation Program in Mining, Metallurgical and Materials Engineering, PPGE3M.

  • Sergio Roberto Mortari, Franciscan University

    Graduate Program in Nanosciences.

  • Roberto Christ Vianna Santos, Universidade Federal de Santa Maria

    Graduate Program of Pharmaceutical Sciences.

  • Guilherme Chagas Kurtz, Franciscan University

    Computer Science.

  • Michele Sagrillo, Universidade Franciscana

    Graduate Program in Nanosciences.

  • Cláudia Lange dos Santos, Franciscan University

    Graduate Program in Nanosciences.

References

P.C. Adamson. et al. Variability in the oral bioavailability of all-trans-retinoic acid. J Natl Cancer Inst. 1993; 85(12): 993-996. https://doi.org/10.1093/jnci/85.12.993 DOI: https://doi.org/10.1093/jnci/85.12.993

R.S. Ambekar, and B. Kandasubramanian. A polydopamine-based platform for anti-cancer drug delivery. Biomater. Sci. 2019; 7: 1776-1793. https://doi.org/10.1039/C8BM01642A DOI: https://doi.org/10.1039/C8BM01642A

W. An. et al. Ocular toxicity of reduced graphene oxide or graphene oxide exposure in mouse eyes. Experimental Eye Research. 2018; 174: 59-69. https://doi.org/10.1016/j.exer.2018.05.024 DOI: https://doi.org/10.1016/j.exer.2018.05.024

J.M. Andrews. Determination of minimum inhibitory concentrations. The Journal of Antimicrobial Chemotherapy. 2001; 48(1): 5-16. https://doi.org/10.1093/jac/48.suppl_1.5 DOI: https://doi.org/10.1093/jac/48.suppl_1.5

B.A. Avelar. et al. The crude latex of Euphorbia tirucalli modulates the cytokine response of leukocytes, especially CD4+ T lymphocytes. Rev. Bras. Farmacogn. 2011; 21(4): 662-667. https://doi.org/10.1590/S0102-695X2011005000096 DOI: https://doi.org/10.1590/S0102-695X2011005000096

I. Barbolina. et al. Purity of graphene oxide determines its antibacterial activity. 2D Materials. 2016; 3(2): e25025. https://doi.org/10.1088/2053-1583/3/2/025025 DOI: https://doi.org/10.1088/2053-1583/3/2/025025

H.M. Bermam. et al. The protein data bank. Nucleic Acids Research. 2000; 28(1). https://doi.org/10.1093/nar/28.1.235 DOI: https://doi.org/10.1093/nar/28.1.235

T. Bjarnsholt. The role of bacterial biofilms in chronic infections. APMIS. 2013; 121(136): 1-54. https://doi.org/10.1111/apm.12099 DOI: https://doi.org/10.1111/apm.12099

P. Capelari-Oliveira. et al. Anti-inflammatory activity of Lychnophora passerina, Asteraceae (Brazilian “Arnica”). Journal of Ethnopharmacology. 2011; 135(2): 393-39. https://doi.org/10.1016/j.jep.2011.03.034 DOI: https://doi.org/10.1016/j.jep.2011.03.034

I.E.M. Carpio. et al. Toxicity of a polymer–graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale. 2012; 4(15): 4746-4756, 2012. https://doi.org/10.1039/C2NR30774J

D.R. Childs, and A.S. Murthy. Overview of Wound Healing and Management. Surgical Clinics of North America. 2018; 97(1): 189-207. https://doi.org/10.1016/j.suc.2016.08.013 DOI: https://doi.org/10.1016/j.suc.2016.08.013

N. Chiu, T. Huang, and H. Lai. Graphene oxide based surface plasmon resonance biosensors. Advances in Graphene Science. 2013; p. 191-216. https://doi.org/10.5772/56221 DOI: https://doi.org/10.5772/56221

C.K. Chua, and M. Pumera. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews. 2014; 43: 291-312. https://doi.org/10.1039/C3CS60303B DOI: https://doi.org/10.1039/C3CS60303B

C. Chung. et al. Biomedical applications of graphene and graphene oxide. Accounts of Chemical Research. 2013; 46(10): 2211-2224. https://doi.org/10.1021/ar300159f DOI: https://doi.org/10.1021/ar300159f

T. Combrouse. et al. Quantification of the extracellular matrix of the Listeria monocytogenes biofilms of different phylogenic lineages with optimization of culture conditions. J. Appl. Microbiol. 2013; 114: 1120-1131. https://doi.org/10.1111/jam.12127 DOI: https://doi.org/10.1111/jam.12127

G.L. Cordeiro. Síntese e processamento de óxido de grafeno reduzido: Abordagens no desenvolvimento de eletrocatalisadores suportados para oxidação de etanol. 2018. 121 p. Tese (Doutorado em Tecnologia Nuclear) – Instituto de Pesquisas Energéticas e Nucleares – IPENCNEN/SP, São Paulo, 2018.

F.J. Cossetin. et al. Peanut leaf extract has antioxidant and anti-inflammatory activity but no acute toxic effects. Regulatory Toxicology and Pharmacology. 2019; 107: e104407. https://doi.org/10.1016/j.yrtph.2019.104407 DOI: https://doi.org/10.1016/j.yrtph.2019.104407

P.M. Davidson, and M.E. Parish. Methods for testing the efficacy of food antimicrobials. Food Technol. 1989; 43: 148-155.

H. Derakhshandeh. et al. Smart bandages: the future of wound care. Trends in Biotechnology. 2018; 36(12): 1259-1274. https://doi.org/10.1016/j.tibtech.2018.07.007 DOI: https://doi.org/10.1016/j.tibtech.2018.07.007

R. Diez-Orejas.et al. Graphene oxide nanosheets increase Candida albicans killing by pro-inflammatory and reparative peritoneal macrophages. Colloids and Surfaces B: Biointerfaces. 2018; 171: 250-259. https://doi.org/10.1016/j.colsurfb.2018.07.027 DOI: https://doi.org/10.1016/j.colsurfb.2018.07.027

M.A. Dobrovolskaia. et al. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine. 2009; 5: 106-117. https://doi.org/10.1016/j.nano.2008.08.001 DOI: https://doi.org/10.1016/j.nano.2008.08.001

R.M. Donlan and J.W. Costerton. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002; 15: 167-193. https://doi.org/10.1128/CMR.15.2.167-193.2002 DOI: https://doi.org/10.1128/CMR.15.2.167-193.2002

D. Dorfey, S.R. Mortari, and T.M. Volkmer. Synthesis and characterization of Graphene oxide and reduced graphene oxide. Disciplinarum Scientia. Série: Naturais e Tecnológicas, Santa Maria. 2017; 18(3): 421-432.

M.G. Durruthy. et al. Decrypting Strong and Weak Single-Walled Carbon Nanotubes Interactions with Mitochondrial Voltage-Dependent Anion Channels Using Molecular Docking and Perturbation Theory. Nature Scientific Reports. 2017; 7(1): 1-19. https://doi.org/10.1038/s41598-017-13691-8 DOI: https://doi.org/10.1038/s41598-017-13691-8

H. Fallatah. et al. Antibacterial effect of graphene oxide (GO) nanoparticles against Pseudomonas putida biofilm of variable age. Environ. Sci. Pollut Res. 2019; 26: 25057-25070. https://doi.org/10.1007/s11356-019-05688-9 DOI: https://doi.org/10.1007/s11356-019-05688-9

G.S. Faria. et al. Produção e caracterização de óxido de grafeno e óxido de grafeno reduzido com diferentes tempos de oxidação. Matéria (Rio J.). 2017; 22(1): e11918. https://doi.org/10.1590/S1517-707620170005.0254 DOI: https://doi.org/10.1590/s1517-707620170005.0254

W.P. Feinstein, and M. Brylinski. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J. Cheminform. 2015; 7(18). https://doi.org/10.1186/s13321-015-0067-5 DOI: https://doi.org/10.1186/s13321-015-0067-5

S. Forli. et al. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016; 11: 905-919. https://doi.org/10.1038/nprot.2016.051 DOI: https://doi.org/10.1038/nprot.2016.051

A. Grada. et al. Research Techniques Made Simple: Analysis of Collective Cell Migration Using the Wound Healing Assay. Journal of Investigative Dermatology. 2017; 137(2): 11-16. https://doi.org/10.1016/j.jid.2016.11.020 DOI: https://doi.org/10.1016/j.jid.2016.11.020

Z. Guo. et al. Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm. Science of The Total Environment. 2017; 580: 1300-1308. https://doi.org/10.1016/j.scitotenv.2016.12.093 DOI: https://doi.org/10.1016/j.scitotenv.2016.12.093

S. Gurunathan. et al. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomedicine. 2012; 7: 5901-5914. https://doi.org/10.2147/IJN.S37397 DOI: https://doi.org/10.2147/IJN.S37397

W.S. Hummers, and R.E. Offeman. Preparation of Graphitic Oxide. Journal of the American Chemical Society. 1958; 80(6): 1339. https://doi.org/10.1021/ja01539a017 DOI: https://doi.org/10.1021/ja01539a017

E. Jiménez. et al. Synthesis, Biological Evaluation and Molecular Docking of New Benzenesulfonylhydrazone as Potential anti-Trypanosoma cruzi Agents. Med. Chem. 2017; 13(2): 149-158. https://doi.org/10.2174/1573406412666160701022230 DOI: https://doi.org/10.2174/1573406412666160701022230

I. Kanayama. et al. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide. Int. J. Nanomedicine. 2014; 11(9): 3363-3373. https://doi.org/10.2147/IJN.S62342 DOI: https://doi.org/10.2147/IJN.S62342

B.H. Kim. et al. Anatomy of high recyclability of graphene oxide based palladium nanocomposites in the Sonogashira reaction: On the nature of the catalyst deactivation. Mater. Express. 2016; 6: 61-68. https://doi.org/10.1166/mex.2016.1280 DOI: https://doi.org/10.1166/mex.2016.1280

K. Krishnamoorthy. et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon. 2013; 53: 38-49. https://doi.org/10.1016/j.carbon.2012.10.013 DOI: https://doi.org/10.1016/j.carbon.2012.10.013

T. Kuila. et al. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale. 2013; 5: 52-71. https://doi.org/10.1039/C2NR32703A DOI: https://doi.org/10.1039/C2NR32703A

R.A. Laskowski, and M.B. Swindells. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling. 2011; 51(10): 2778-2786. https://doi.org/10.1021/ci200227u DOI: https://doi.org/10.1021/ci200227u

L.R.M. Lima. et al. Characterization of commercial graphene-based materials for application in thermoplastic nanocomposites. Materials Today: Proceedings. 2020; 20(3): 383-390. https://doi.org/10.1016/j.matpr.2019.10.077 DOI: https://doi.org/10.1016/j.matpr.2019.10.077

S.Y. Lyu, and W.B. Park. Production of cytokine and NO by RAW 264.7 macrophages and PBMC in vitro incubation with flavonoids. Arch. Pharm. Res. 2005; 28(5): 573-581. https://doi.org/10.1007/BF02977761 DOI: https://doi.org/10.1007/BF02977761

M. Maczynski. et al. Anti-inflammatory properties of na isoxazole derivative – MZO-2. Pharmacological Reports. 2008; 68: 894 - 902. https://doi.org/10.1016/j.pharep.2016.04.017 DOI: https://doi.org/10.1016/j.pharep.2016.04.017

C.T.M. Mascio, J.D. Alder, and J.A. Silverman. Bactericidal action of daptomycin against stationary- phase and nondividing Staphylococcus aureus cells. Antimicrob Agents Chemother. 2007; 51(12): 4255-4260. https://doi.org/10.1128/AAC.00824-07 DOI: https://doi.org/10.1128/AAC.00824-07

H. Mehl. et al. Efeito da variação de parâmetros reacionais na preparação de grafeno via oxidação e redução do grafite. Química Nova. 2014; 37(10): 1639-1645. https://doi.org/10.5935/0100-4042.20140252 DOI: https://doi.org/10.5935/0100-4042.20140252

M.C.P. Mendonça. et al. Reduced graphene oxide: nanotoxicological profile in rats. J Nanobiotechnol. 2016; 14(53). https://doi.org/10.1186/s12951-016-0206-9 DOI: https://doi.org/10.1186/s12951-016-0206-9

R.D. Monds, and G.A. O’Toole The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 2009; 17: 73-87. https://doi.org/10.1016/j.tim.2008.11.001 DOI: https://doi.org/10.1016/j.tim.2008.11.001

T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal Of Immunological Methods. 1983; 65(1-2): 55-63. https://doi.org/10.1016/0022-1759(83)90303-4 DOI: https://doi.org/10.1016/0022-1759(83)90303-4

V.S.K. Nishihira. et al. In vitro and in silico protein corona formation evaluation of curcumin and capsaicin loaded-solid lipid nanoparticles. Toxicology in Vitro. 2019; 61: e104598. https://doi.org/10.1016/j.tiv.2019.104598 DOI: https://doi.org/10.1016/j.tiv.2019.104598

A.M. Pinto, I.C. Gonçalves, and F.D. Magalhães. Graphene-based materials biocompatibility: A review. Colloids and Surfaces B: Biointerfaces. 2013; 111: 188-202. https://doi.org/10.1016/j.colsurfb.2013.05.022 DOI: https://doi.org/10.1016/j.colsurfb.2013.05.022

K.C. Preethi, G. Kuttan, and R. Kuttan. Anti-inflammatory activity of flower extract of Calendula officinalis Linn. and its possible mechanism of action. Indian J Exp Biol. 2009; 47(2): 113-20.

W. Qian. et al. Polydimethylsiloxane incorporated with reduced graphene oxide (rGO) sheets for wound dressing application: Preparation and characterization. Colloids and Surfaces B: Biointerfaces, v. 166, p. 61-71, 2018. https://doi.org/10.1016/j.colsurfb.2018.03.008 DOI: https://doi.org/10.1016/j.colsurfb.2018.03.008

Y. Qin. Antimicrobial textile dressings to manage wound infection. Advanced Textiles for Wound Care (2 ed.), In: The Textile Institute Book Series. 2019; 193-210. https://doi.org/10.1533/9781845696306.1.179 DOI: https://doi.org/10.1016/B978-0-08-102192-7.00007-2

H. Reinecke. et al. Peripheral arterial disease and critical limb ischaemia: Still poor outcomes and lack of guideline adherence. European Heart Journal. 2015; 36(15): 932-938. https://doi.org/10.1093/eurheartj/ehv006 DOI: https://doi.org/10.1093/eurheartj/ehv006

R.C. Riéffel. Desenvolvimento e avaliação farmacológica in vitro de nanocápsulas contendo óleo de Astrocaryum vulgare no reparo tecidual cutâneo. 2019. Dissertação de mestrado – Universidade Franciscana, Programa de Pós-Graduação em Nanociências, RS, 2019.

H.J.J. Rosas. et al. First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide. J. Mol. Model. 2011; 17:1133-1139. https://doi.org/10.1007/s00894-010-0818-1 DOI: https://doi.org/10.1007/s00894-010-0818-1

A. Rossato. et al. Evaluation in vitro of antimicrobial activity of tucumã oil (Astrocaryum Vulgare). Archives in Biosciences & Health. 2019; 1(1): 99-112. https://doi.org/10.18593/abh.19701 DOI: https://doi.org/10.18593/abh.19701

O.N. Ruiz. et al. Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano. 2011; 5(10): 8100‐8107. https://doi.org/10.1021/nn202699t DOI: https://doi.org/10.1021/nn202699t

M.R. Sagrillo. et al. Tucumã fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chemistry. 2015; 173:741–748. https://doi.org/10.1016/j.foodchem.2014.10.067 DOI: https://doi.org/10.1016/j.foodchem.2014.10.067

C. Salvador-Morales. et al. Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials. 2009; 30: 2231-2240. https://doi.org/10.1016/j.biomaterials.2009.01.005 DOI: https://doi.org/10.1016/j.biomaterials.2009.01.005

J. Shen. et al. Fast and facile preparation of graphene oxide and reduced graphene. Chem. Mater. 2009; 21: 3514-3520. https://doi.org/10.1021/cm901247t DOI: https://doi.org/10.1021/cm901247t

R. Siburian. et al. New Route to Synthesize of Graphene Nano Sheets. Oriental Journal of Chemistry. 2018; 34(1):182-187. http://dx.doi.org/10.13005/ojc/340120 DOI: https://doi.org/10.13005/ojc/340120

K.K.H. Silva, H. Huang, and M. Yoshimura. Progress of reduction of graphene oxide by ascorbic acid. Applied Surface Science. 2018; 447: 338-346. https://doi.org/10.1016/j.apsusc.2018.03.243 DOI: https://doi.org/10.1016/j.apsusc.2018.03.243

D.P. Singh. et al. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications. Materials Science and Engineering C. 2018; 86: 173-197. https://doi.org/10.1016/j.msec.2018.01.004 DOI: https://doi.org/10.1016/j.msec.2018.01.004

P. Smaniotto. et al. Tratamento clínico das feridas - curativos. Rev Med (São Paulo). 2010; 89(3/4): 137-141. https://doi.org/10.11606/issn.1679-9836.v89i3/4p137-141 DOI: https://doi.org/10.11606/issn.1679-9836.v89i3/4p137-141

A.E.S. Sousa. et al. O papel da arginina e glutamina na imunomodulação em pacientes queimados - revisão de literatura. Rev. Bras. Queimaduras. 2015;14(4): 295-299.

S. Stepanović. et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007; 115(8): 891-899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x DOI: https://doi.org/10.1111/j.1600-0463.2007.apm_630.x

X. Sun. et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano research. 2008; 1(3): 203-212. https://doi.org/10.1007/s12274-008-8021-8 DOI: https://doi.org/10.1007/s12274-008-8021-8

S. Thampi. et al. Differential Adhesive and Bioactive Properties of the Polymeric Surface Coated with Graphene Oxide Thin Film. ACS Applied Materials and Interfaces. 2017; 9(5): 4498-4508. https://doi.org/10.1021/acsami.6b14863 DOI: https://doi.org/10.1021/acsami.6b14863

P. Thangavel. et al. Development of reduced graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats. Journal of Colloid and Interface Science. 2018; 517: 251-264. https://doi.org/10.1016/j.jcis.2018.01.110 DOI: https://doi.org/10.1016/j.jcis.2018.01.110

O. Trott, and A.J. Olson. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. International Journal of Clinical and Experimental Pathology. 2009; 31(2):455-461. https://doi.org/10.1002/jcc.21334 DOI: https://doi.org/10.1002/jcc.21334

J. Wang, Z. Chen, and B. Chen. Adsorption of Polycyclic Aromatic Hydrocarbons by Graphene and Graphene Oxide Nanosheets. Environmental science & technology. 2014; 48(9): 4817-4825. https://doi.org/10.1021/es405227u DOI: https://doi.org/10.1021/es405227u

J. Wang, E.C. Salihi, and L. Šiller. Green reduction of graphene oxide using alanine. Materials Science and Engineering C. 2017; 72(1): 1-6. https://doi.org/10.1016/j.msec.2016.11.017 DOI: https://doi.org/10.1016/j.msec.2016.11.017

N. Yadav. et al. Graphene oxide- coated surface: inhibition of bacterial biofilm formation due to specific surface–interface interactions. ACS Omega. 2017; 2(7): 3070-3082. https://doi.org/10.1021/acsomega.7b00371 DOI: https://doi.org/10.1021/acsomega.7b00371

Y. Yang. et al. Graphene based materials for biomedical applications. Materials Today. 2013; 16(10): 365-373. https://doi.org/10.1016/j.mattod.2013.09.004 DOI: https://doi.org/10.1016/j.mattod.2013.09.004

R. Zine, and M. Sinha. Nanofibrous poly (3-hydroxybutyrate-co-3 hydroxyvalerate)/collagen/ graphene oxide scaffolds for wound coverage. Materials Science & Engineering C. 2017; 80: 129-134. https://doi.org/10.1016/j.msec.2017.05.138 DOI: https://doi.org/10.1016/j.msec.2017.05.138

Downloads

Published

2021-12-01

How to Cite

Oliveira, P. S., Rossato, A., Silva Silveira, L. da, Ledur, C. M., Sousa Filho, W. P. de, Kaufmann Junior, C. G., Mortari, S. R., Vianna Santos, R. C., Kurtz, G. C., Sagrillo, M., & dos Santos, C. L. (2021). Graphene oxide and reduced graphene oxide: From preparation to verification of safety and therapeutic efficacy in Silico and in Vitro. International Journal for Innovation Education and Research, 9(12), 142-169. https://doi.org/10.31686/ijier.vol9.iss12.3572
Received 2021-11-01
Accepted 2021-11-19
Published 2021-12-01

Most read articles by the same author(s)