Safety profile, antimicrobial and antibiofilm activities of a nanostructured lipid carrier containing oil and butter from Astrocaryum vulgare: in vitro studies

Authors

  • Aline Rossato Universidade Franciscana
  • Larissa da Silva Silveira Universidade Franciscana
  • Pâmella Scharamm Oliveira Universidade Franciscana
  • Thobias Toniolo de Souza Universidade Franciscana
  • Ana Paula Becker Universidade Franciscana
  • Roger Wagner Universidade Federal de Santa Maria
  • Bruna Klein Universidade Federal de Santa Maria
  • Walter Paixão de Souza Filho Universidade Franciscana
  • Roberto Christ Vianna dos Santos Universidade Federal de Santa Maria
  • Diego de Souza Universidade Franciscana
  • Matheus Dellaméa Baldissera Universidade Federal de Santa Maria
  • Michele Rorato Sagrillo Universidade Federal de Santa Maria

DOI:

https://doi.org/10.31686/ijier.vol9.iss5.3113

Keywords:

Microorganisms, Infections, Nanoparticles, tucumã

Abstract

Ethnopharmacological relevance: Tucumã (Astrocaryum vulgare)is a fruit native to the Amazon region. Extracts from the peel and pulp are thought of as promising treatments for bacterial infections. The primary constituents of Tucumã oil and butter possess unsaturated carbon chains that are susceptible to oxidation by light or heat. The oils have high volatility and low aqueous solubility that limits their use without a vehicle. Nanotechnology refers to techniques to solve these problems. Nanostructured lipid carriers (NLC), for example, protect fixed oils degradation by heat or light, as well as from oxidation and evaporation, ensuring greater stability and function, thereby prolonging the useful life of the final product. Study objectives: The objective of this study was to evaluate the hemolytic, cytotoxic, antimicrobial and antibiofilm properties of an NLC containing Tucumã butter and oil soasto improve the solubility and photosensitivity of the compounds, generating better pharmacological efficacy. Materials and methods: The NLC was assessed for stability for 60 days. The cytotoxicity of nanoparticles in peripheral blood mononucleated cells was determined in culture using assays for cell viability, DNA damage, oxidative metabolism and damage to human erythrocytes. Antimicrobial activity was determined using the broth microdilution technique and antibiofilm activity according to standardized protocols. Results: The Tucumã NLC remained stable throughout the evaluated period, with pH between 5.22–5.35, monodisperse distribution (PDI<0.3) and average particle size of 170.7 ± 3nm. Cytotoxicity studies revealed that the NLC is safe and modulates inflammatory processes, demonstrated by increased cell viability and nitric oxide levels. There was low hemolytic activity of the NLC against human erythrocytes almost concentrations tested. Conclusion: Taken together, the data suggest that NLC containing Tucumã oil and butter showed antimicrobial and antibiofilm activity against organisms that cause morbidity and mortality in humans. They may be alternative solutions to public health problems related to bacterial infections.

Downloads

Download data is not yet available.

Author Biographies

  • Aline Rossato, Universidade Franciscana

    Graduate Program in Nanosciences,

  • Larissa da Silva Silveira, Universidade Franciscana

    Graduate Program in Nanosciences

  • Pâmella Scharamm Oliveira, Universidade Franciscana

    Graduate Program in Nanosciences

  • Thobias Toniolo de Souza, Universidade Franciscana

    Biomedicine Curse

  • Ana Paula Becker, Universidade Franciscana

    Biomedicine Curse

  • Roger Wagner, Universidade Federal de Santa Maria

    Department of Technology and Food Science

  • Bruna Klein, Universidade Federal de Santa Maria

    Department of Technology and Food Science

  • Walter Paixão de Souza Filho, Universidade Franciscana

    Graduate Program in Nanosciences

  • Roberto Christ Vianna dos Santos, Universidade Federal de Santa Maria

    Graduate Program of Pharmaceutical Sciences

  • Diego de Souza, Universidade Franciscana

    Graduate Program in Nanosciences,

  • Matheus Dellaméa Baldissera, Universidade Federal de Santa Maria

    Graduate Program of Pharmacology

  • Michele Rorato Sagrillo, Universidade Federal de Santa Maria

    Graduate Program in Nanosciences

References

A. Alalaiwe, P.W. Wang, L.P. Lu, P.Y. Chen, Y.J. Fang, and C.S. Yang. Synergistic Anti-MRSA Activity of Cationic Nanostructured Lipid Carriers in Combination With Oxacillin for Cutaneous Application, Frontiers in Microbiology. 2018; 9:1-14. https://doi.org/10.3389/fmicb.2018.01493 DOI: https://doi.org/10.3389/fmicb.2018.01493

B.D. Alencar, A.A. Melo, C.G, Silva, L.R. Lima, S.M.K. Pires-Cavalcante, F.R. Carneiro, S.A. Rabelo, V.O. Souza, F.S.H.R. Vieira, A.F. Viana, H.A. Sampaio, and S.S. Sampaio. Antioxidant, hemolytic, antimicrobial, and cytotoxic activities of the tropical Atlantic marine zoanthid Palythoacaribaeorum. Annals of the Brazilian Academy of Sciences. 2015; 87(2):1113-1123. https://doi.org/10.1590/0001-3765201520140370 DOI: https://doi.org/10.1590/0001-3765201520140370

T.P. Amadeu, B.A. Seabra, M.G. de Oliveira, and A. Monte-Alto-Costa. Nitric oxide donor improves healing if applied on inflammatory and proliferative phase. Journal of Surgical Research. 2008; 149(1):84 – 93. DOI: https://doi.org/10.1016/j.jss.2007.10.015

C. Ashokraja, M. Sakar, and S. Balakumar. A perspective on the hemolytic activity of chemical and green-synthesized silver and silver oxide Nanoparticles. Materials Research Express. 2017; 4(10):1-25. https://doi.org/10.1088/2053-1591/aa90f2 DOI: https://doi.org/10.1088/2053-1591/aa90f2

S.A.L. Bahari, and H. Hamishehkar. The Impact of Variables on Particle Size of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers;A Comparative Literature Review. Advanced Pharmaceutical Bulletin. 2016; 6(2):143-151. DOI: https://doi.org/10.15171/apb.2016.021

D.M. Baldissera, F.C. Souza, H.T. Grando, F.L. Cossetin, R.M. Sagrillo, K. Nascimento, S.A. da Silva, K.A. Machado, M.B.I. da Cruz, M.L. Stefani, B. Klein, G.S. Monteiro, Antihyperglycemic, antioxidant activities of tucumã oil (Astrocaryum vulgare) in alloxan-induced diabetic mice, and identification of fatty acid profile by gas chromatograph: New natural source to treat hyperglycemia. Chemico – Biological Interactions. 2017; 270:51-58. https://doi.org/10.1016/j.cbi.2017.04.001 DOI: https://doi.org/10.1016/j.cbi.2017.04.001

S.B.I.A. Barreiros, and M.J. David. Estresse oxidativo: entre culturas de espécies reativas e defesa do organismo. Química Nova. 2006; 29(1):113 – 123. DOI: https://doi.org/10.1590/S0100-40422006000100021

G. Barshtein, D. Arbell, and S. Yedgar. Hemolytic effect of polymeric nanoparticles: role of albumin. IEEE Transactions on nanobioscience. 2011; 10(4):259-261. DOI: https://doi.org/10.1109/TNB.2011.2175745

S.D. BERNARDI, A.T. Pereira, R.N. Maciel, J. Bertoloto, S.G. Vieira, C.G. Oliveira, and A.P. Rocha-Filho. et al. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. Journal of Nanobiotechnology. 2011; 9(44):1-9. https://doi.org/10.1186/1477-3155-9-44 DOI: https://doi.org/10.1186/1477-3155-9-44

S.C. Bestwick, and L. Milne. Effects of β-carotene on antioxidant enzyme activity, intracellular reactive oxygen and membrane integrity within post confluent Caco-2 intestinal cells. Biochimica et BiophysicaActa (BBA) - General Subjects. 1999; 1474(1):47 – 55. DOI: https://doi.org/10.1016/S0304-4165(99)00212-3

E. Bony, F. Boudard, P. Brat, E. Dussossoy, K. Portet, P. Poucheret, J. Giaimis, and A. Michel. Awara (Astrocaryum vulgare M.) pulp oil: Chemical characterization, and anti-inflammatory properties in a mice model of endotoxic shock and a rat model of pulmonary inflammation. 2012; 83(1):33-43. https://doi.org/10.1016/j.fitote.2011.09.007 DOI: https://doi.org/10.1016/j.fitote.2011.09.007

G. Botton, C.F. Cadoná, A.K. Machado, F.V. Azzolin, I.B.M. da Cruz, M.R. Sagrillo, and J.R. Praetzel. Induction of cytotoxicity, oxidative stress, and genotoxicity by root filling pastes used in primary teeth. International Endodontic Journal. 2015; 49(8):737–745. DOI: https://doi.org/10.1111/iej.12502

S.N. Bryan, and B.M. Grisham. Methods to detect nitric oxide and its metabolites in biological samples. Free Radical Biology and Medicine. 2007; 43(5):645-657. DOI: https://doi.org/10.1016/j.freeradbiomed.2007.04.026

A.P.C.P. Carlotti. Abordagem clínica dos distúrbios do equilíbrio ácido-base. Medicina (Ribeirao Preto Online). Revista USP. 2012; 45(2). DOI: https://doi.org/10.11606/issn.2176-7262.v45i2p244-262

CDC - Centers for Disease Control and Prevention. https://www.cdc.gov/drugresistance/index.html (2019), Accessed 30th March 2020.

M. Chen, X. Liu, and A. Fahr. Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: In vitro study with finite and infinite dosage application. International Journal of Pharmaceutics. 2011; 408(1-2):223- 234. https://doi.org/10.1016/j.ijpharm.2011.02.006 DOI: https://doi.org/10.1016/j.ijpharm.2011.02.006

W.S. Choi, G.P. Shin, H.J. Lee, and D.G. Kim. The regulatory effect of veratric acid on NO production in LPS-stimulated RAW264.7 macrophage cells. Cellular Immunoogyl. 2012; 280(2):164–170. https://doi.org/10.1016/j.cellimm.2012.12.007 DOI: https://doi.org/10.1016/j.cellimm.2012.12.007

CLSI- CLINICAL LABORATORY AND STANDARDS INSTITUTE. Reference method for broth dilution antifungal susceptibility testing yeasts 3ª ed. Approved standard M27-A3. Clinical Laboratory and Standards Institute. 2008. Wayne, PA.

M.D. Esposti. Measuring mitochondrial reactive oxygen species. Methods. 2002; 26(4):335–340. DOI: https://doi.org/10.1016/S1046-2023(02)00039-7

V. Fencl, A. Jabor, A. Kazda, and J. Figge. Diagnosis of metabolic acid-base disturbances in critically ill patients. American Journal of Respiratory and Critical care Medicine. 2000; 162(6):2246-2251. DOI: https://doi.org/10.1164/ajrccm.162.6.9904099

B.N. Freire, B. Naiana, L.C.S.R. Pires, H.P. Oliveira, and M.M. Costa. Atividade Antimicrobiana e Antibiofilme de Nanopartículas de Prata sobre Isolados de Aeromonas spp. obtidos de Organismos Aquáticos. Pesquisa Veterinária Brasileira. 2018; 38(2):244-249. http://dx.doi.org/10.1590/1678-5150-pvb-4805. DOI: https://doi.org/10.1590/1678-5150-pvb-4805

P. Hovorkova, K. Lalouckova, and E. Skrivanová. Determination of in vitro antibacterial activity of plant oils containing medium-chain fatty acids against Gram-positive pathogenic and gut commensal bacteria. Czech Journal of Animal Science. 2018(3):119-125. DOI: https://doi.org/10.17221/70/2017-CJAS

A.J. Huh, and Y.J. Kwon. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release. 2011; 156(2):128-145. DOI: https://doi.org/10.1016/j.jconrel.2011.07.002

L.M. JOBIM, V.C.R. Santos; S.F.C. Alves, M.R. Oliveira, P.C. Mostardeiro, R.M. Sagrillo, C.O de Souza Filho, M.F.L Garcia, F.M. Manica-Cattani, E.E. Ribeiro, and M.B.I da Cruz. Antimicrobial activity of Amazon Astrocaryumaculeatum extracts and its association to oxidative metabolism. Microbiological Research. 2014; 169(4):314-323. DOI: https://doi.org/10.1016/j.micres.2013.06.006

K. R. Joshi. Role of natural products against Microorganisms. American Journal of Clinical Microbiology and Antimicrobial. 2018; 1(1).

N. KARIMI, B. Ghanbarzadeh, H. Hamishehkar, B. Mehramuz, and H.S. Kafil. Antioxidant, Antimicrobial and Physicochemical Properties of Turmeric Extract-Loaded Nanostructured Lipid Carrier (CNL). Colloid and Interface Science Communications. 2018; 22:18–24. DOI: https://doi.org/10.1016/j.colcom.2017.11.006

M.L.W. Knetsch, and L.H. Koole. New strategies in the development of anti¬microbial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers Basel. 2011; 3:340–366. DOI: https://doi.org/10.3390/polym3010340

C. Li, R. Fu, C. Yu, Z. Li, H. Guan, D. Hu, D. Zhao, and L. Lu. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study. International Journal of Nanomedicine. 2013; 8:4131-4145. DOI: https://doi.org/10.2147/IJN.S51679

L.S.Q. LOPES, A.R. Vaucher, L.J. Giongo, A. Gundel, and V.C.R. Santos. Characterisation and anti-biofilm activity of glycerol monolaurate nanocapsules against Pseudomonas aeruginosa. Microbial Pathogenesis. 2019; 130:178-185. https://doi.org/10.1016/j.micpath.2019.03.007 DOI: https://doi.org/10.1016/j.micpath.2019.03.007

P.T.G. Machado, B.M. Valeirinho, L. Mazzarino, P.C.L Machado Filho, M. Maraschin, A.L.R. Cerri, and S. Kuhnen. Development of propolis Nanoparticles for the treatment og bovine mastitis: in vitro studies on antimicrobial and cytotoxic activities. Canadian Journal of Animal Science. 2019; 99(4):713-723. DOI: https://doi.org/10.1139/cjas-2018-0173

S. Makpol, A. Zainuddin, A.N. Rahim, M.A.Y. Yusof, and W.Z.W. Ngah. Alpha-tocopherol modulates hydrogen peroxide-induced DNA damage and telomere shortening of human skin fibroblasts derived from differently aged individuals. Planta Médica. 2010; 76(9):869 – 875. DOI: https://doi.org/10.1055/s-0029-1240812

M. Mokarizadeh, S.H. Kafil, S. Ghanbarzadeh, A. Alizadeh, and H. Hamishehkar. Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: a potential application in food stuffs as a natural preservative. Research in Pharmaceutical Sciences. 2017; 12(5):409-415. DOI: https://doi.org/10.4103/1735-5362.213986

M. Moreno-Sastre, M. Pastor, A. Esquisabel, E. Sans, M. Vinas, A. Fleischer, E. Polomino, D. Bachiller, and L.J. Pedraz. Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis. International Journal of Pharmaceutics. 2016; 498(1-2):263-273. DOI: https://doi.org/10.1016/j.ijpharm.2015.12.028

T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 1983; 65(1-2):55–63. DOI: https://doi.org/10.1016/0022-1759(83)90303-4

D. Mozaffarian, A. Ascherio, B.F. Hu, J.M. Stamfer, C.W. Willet, S.D. Siscovick, and B.E. Rimm. Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation. 2005; 111(2):157-164. DOI: https://doi.org/10.1161/01.CIR.0000152099.87287.83

M. Mühling, A. Bradford, W.J. Readman, J.P. Somerfield, and D.R. Handy. An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Marine Environmental Research. 2009; 68(5):278-283. DOI: https://doi.org/10.1016/j.marenvres.2009.07.001

A.M. Partearroyo, A.M. Urbanja, and M.F. Goni. Effective detergent/lipid ratios in the solubilization of phosphatidylcholine vesicles by Triton X‐100. FEBS Letters. 1992; 302(2):138-140. https://doi.org/10.1016/0014-5793(92)80424-F DOI: https://doi.org/10.1016/0014-5793(92)80424-F

T.O. Peulen, and K.J. Wilkinson. Diffusion of nanoparticles in a biofilm. Environmental Science e Technology. 2011; 45(8):3367-3373. DOI: https://doi.org/10.1021/es103450g

P. Piran, S.H Kafil, and H. Hamishehkar. Formulation of Menthol-Loaded Nanostructured Lipid Carriers to Enhance Its Antimicrobial Activity for Food Preservation. Advanced Pharmaceutical Bulletin. 2017; 7(2):261-268. DOI: https://doi.org/10.15171/apb.2017.031

A. Porse, J.L. Jahn, H.M.M. Ellabaan, and A.O.M. Sommer. Dominant resistance and negative epistasis can limit the co-selection of de novo resistance mutations and antibioticresistance genes. Nature Communications. 2020; 11(1199). DOI: https://doi.org/10.1038/s41467-020-15080-8

M.D. Rizk, M.B. Witte, and A. Barbul. Nitric oxide and wound healing. World Journal Surgery. 2004; 28:301-306. DOI: https://doi.org/10.1007/s00268-003-7396-7

A. Rossato, S.L. Silveira, S.Q.L. Lopes, P.W. de Souza Filho, F.L. Schaffer, V.C.R. Santos, and R.M. Sagrillo. Evaluation in vitro of antimicrobial activity of tucumã oil (Astrocaryum vulgare). Archives in Biosciences e Health. 2019; 1(1):99-112. https://doi.org/10.18593/abh.19701 DOI: https://doi.org/10.18593/abh.19701

M.R. Sagrillo, M.F.L. Garcia, C.O. de Souza Filho, F.M.M.M. Duarte, E.E. Ribeiro, C.F. Cadoná, and M.B.I da Cruz. Tucumã fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chemistry. 2015; 173:741–748. https://doi.org/10.1016/j.foodchem.2014.10.067 DOI: https://doi.org/10.1016/j.foodchem.2014.10.067

S.F. Siqueira, G.G. Rossi, K.A. Machado, S.F.C. Alves, C.V. Flores, D.V. Somavilla, A.V. Agertt, D.J. Siqueira, S.R. Dias, M.P. Copetti, R.M. Sagrillo, F.D. Voltar, and A.M.M. de Campos. Sulfamethoxazole derivatives complexed with metals: a new alternative against biofilms of rapidly growing mycobacteria. Biofouling. 2018; 34(8):893-911. DOI: https://doi.org/10.1080/08927014.2018.1514497

W.P.S. de Souza Filho, S.S. Homrich, M.P. Copetti, S.D. Peres, V.D. de Souza, C.R. Rieffel, K.A. Machado, F.A. Ourique, and R.M. Sagrillo. Effects of nanocapsules containing all-trans-retinoic acid under hemolytic and coagulation activity. Archives in Biosciences & Health. 2019; 1(1):125-138. DOI: https://doi.org/10.18593/abh.16726

F.J. Sutilli, M.D. Gatlin, M.B. Heinzmann, and B. Baldisserotto. Plant essential oils as fish diet additives: benefits on fish health and stability in feed. Reviews in Aquaculture. 2018; 10(3):716-726. https://doi.org/10.1111/raq.12197 DOI: https://doi.org/10.1111/raq.12197

A. Schwentker, Y. Vodovotz, R. Weller, and R.T. Billiar. Nitric oxide and wound repair: Role of cytokines? Nitric Oxide. 2002; 7(1):1-10. https://doi.org/10.1016/S1089-8603(02)00002-2 DOI: https://doi.org/10.1016/S1089-8603(02)00002-2

S. Stepanovic, D. Vukovic, V. Hola, D.G. Bonaventura, S. Djukic, I. Cirkovic, and F. Ruzicka. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Journal of Pathology, Microbiology and Immunology. 2007; 115(8):891-899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x DOI: https://doi.org/10.1111/j.1600-0463.2007.apm_630.x

B. Tarsillo, and R. Priefer. Proteobiotics as a new antimicrobial therapy. Microbial Pathogenesis. 2020; 142. https://doi.org/10.1016/j.micpath.2020.104093 DOI: https://doi.org/10.1016/j.micpath.2020.104093

Downloads

Published

2021-05-01

How to Cite

Rossato, A., Silveira, L. da S., Oliveira, P. S., Souza, T. T. de, Becker, A. P., Wagner, R., Klein, B., Filho, W. P. de S., Santos, R. C. V. dos, Souza, D. de, Baldissera, M. D., & Sagrillo, M. R. (2021). Safety profile, antimicrobial and antibiofilm activities of a nanostructured lipid carrier containing oil and butter from Astrocaryum vulgare: in vitro studies. International Journal for Innovation Education and Research, 9(5), 478-497. https://doi.org/10.31686/ijier.vol9.iss5.3113
Received 2021-04-14
Accepted 2021-04-28
Published 2021-05-01

Most read articles by the same author(s)