Safety profile, antimicrobial and antibiofilm activities of a nanostructured lipid carrier containing oil and butter from Astrocaryum vulgare: in vitro studies
DOI:
https://doi.org/10.31686/ijier.vol9.iss5.3113Keywords:
Microorganisms, Infections, Nanoparticles, tucumãAbstract
Ethnopharmacological relevance: Tucumã (Astrocaryum vulgare)is a fruit native to the Amazon region. Extracts from the peel and pulp are thought of as promising treatments for bacterial infections. The primary constituents of Tucumã oil and butter possess unsaturated carbon chains that are susceptible to oxidation by light or heat. The oils have high volatility and low aqueous solubility that limits their use without a vehicle. Nanotechnology refers to techniques to solve these problems. Nanostructured lipid carriers (NLC), for example, protect fixed oils degradation by heat or light, as well as from oxidation and evaporation, ensuring greater stability and function, thereby prolonging the useful life of the final product. Study objectives: The objective of this study was to evaluate the hemolytic, cytotoxic, antimicrobial and antibiofilm properties of an NLC containing Tucumã butter and oil soasto improve the solubility and photosensitivity of the compounds, generating better pharmacological efficacy. Materials and methods: The NLC was assessed for stability for 60 days. The cytotoxicity of nanoparticles in peripheral blood mononucleated cells was determined in culture using assays for cell viability, DNA damage, oxidative metabolism and damage to human erythrocytes. Antimicrobial activity was determined using the broth microdilution technique and antibiofilm activity according to standardized protocols. Results: The Tucumã NLC remained stable throughout the evaluated period, with pH between 5.22–5.35, monodisperse distribution (PDI<0.3) and average particle size of 170.7 ± 3nm. Cytotoxicity studies revealed that the NLC is safe and modulates inflammatory processes, demonstrated by increased cell viability and nitric oxide levels. There was low hemolytic activity of the NLC against human erythrocytes almost concentrations tested. Conclusion: Taken together, the data suggest that NLC containing Tucumã oil and butter showed antimicrobial and antibiofilm activity against organisms that cause morbidity and mortality in humans. They may be alternative solutions to public health problems related to bacterial infections.
References
A. Alalaiwe, P.W. Wang, L.P. Lu, P.Y. Chen, Y.J. Fang, and C.S. Yang. Synergistic Anti-MRSA Activity of Cationic Nanostructured Lipid Carriers in Combination With Oxacillin for Cutaneous Application, Frontiers in Microbiology. 2018; 9:1-14. https://doi.org/10.3389/fmicb.2018.01493 DOI: https://doi.org/10.3389/fmicb.2018.01493
B.D. Alencar, A.A. Melo, C.G, Silva, L.R. Lima, S.M.K. Pires-Cavalcante, F.R. Carneiro, S.A. Rabelo, V.O. Souza, F.S.H.R. Vieira, A.F. Viana, H.A. Sampaio, and S.S. Sampaio. Antioxidant, hemolytic, antimicrobial, and cytotoxic activities of the tropical Atlantic marine zoanthid Palythoacaribaeorum. Annals of the Brazilian Academy of Sciences. 2015; 87(2):1113-1123. https://doi.org/10.1590/0001-3765201520140370 DOI: https://doi.org/10.1590/0001-3765201520140370
T.P. Amadeu, B.A. Seabra, M.G. de Oliveira, and A. Monte-Alto-Costa. Nitric oxide donor improves healing if applied on inflammatory and proliferative phase. Journal of Surgical Research. 2008; 149(1):84 – 93. DOI: https://doi.org/10.1016/j.jss.2007.10.015
C. Ashokraja, M. Sakar, and S. Balakumar. A perspective on the hemolytic activity of chemical and green-synthesized silver and silver oxide Nanoparticles. Materials Research Express. 2017; 4(10):1-25. https://doi.org/10.1088/2053-1591/aa90f2 DOI: https://doi.org/10.1088/2053-1591/aa90f2
S.A.L. Bahari, and H. Hamishehkar. The Impact of Variables on Particle Size of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers;A Comparative Literature Review. Advanced Pharmaceutical Bulletin. 2016; 6(2):143-151. DOI: https://doi.org/10.15171/apb.2016.021
D.M. Baldissera, F.C. Souza, H.T. Grando, F.L. Cossetin, R.M. Sagrillo, K. Nascimento, S.A. da Silva, K.A. Machado, M.B.I. da Cruz, M.L. Stefani, B. Klein, G.S. Monteiro, Antihyperglycemic, antioxidant activities of tucumã oil (Astrocaryum vulgare) in alloxan-induced diabetic mice, and identification of fatty acid profile by gas chromatograph: New natural source to treat hyperglycemia. Chemico – Biological Interactions. 2017; 270:51-58. https://doi.org/10.1016/j.cbi.2017.04.001 DOI: https://doi.org/10.1016/j.cbi.2017.04.001
S.B.I.A. Barreiros, and M.J. David. Estresse oxidativo: entre culturas de espécies reativas e defesa do organismo. Química Nova. 2006; 29(1):113 – 123. DOI: https://doi.org/10.1590/S0100-40422006000100021
G. Barshtein, D. Arbell, and S. Yedgar. Hemolytic effect of polymeric nanoparticles: role of albumin. IEEE Transactions on nanobioscience. 2011; 10(4):259-261. DOI: https://doi.org/10.1109/TNB.2011.2175745
S.D. BERNARDI, A.T. Pereira, R.N. Maciel, J. Bertoloto, S.G. Vieira, C.G. Oliveira, and A.P. Rocha-Filho. et al. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. Journal of Nanobiotechnology. 2011; 9(44):1-9. https://doi.org/10.1186/1477-3155-9-44 DOI: https://doi.org/10.1186/1477-3155-9-44
S.C. Bestwick, and L. Milne. Effects of β-carotene on antioxidant enzyme activity, intracellular reactive oxygen and membrane integrity within post confluent Caco-2 intestinal cells. Biochimica et BiophysicaActa (BBA) - General Subjects. 1999; 1474(1):47 – 55. DOI: https://doi.org/10.1016/S0304-4165(99)00212-3
E. Bony, F. Boudard, P. Brat, E. Dussossoy, K. Portet, P. Poucheret, J. Giaimis, and A. Michel. Awara (Astrocaryum vulgare M.) pulp oil: Chemical characterization, and anti-inflammatory properties in a mice model of endotoxic shock and a rat model of pulmonary inflammation. 2012; 83(1):33-43. https://doi.org/10.1016/j.fitote.2011.09.007 DOI: https://doi.org/10.1016/j.fitote.2011.09.007
G. Botton, C.F. Cadoná, A.K. Machado, F.V. Azzolin, I.B.M. da Cruz, M.R. Sagrillo, and J.R. Praetzel. Induction of cytotoxicity, oxidative stress, and genotoxicity by root filling pastes used in primary teeth. International Endodontic Journal. 2015; 49(8):737–745. DOI: https://doi.org/10.1111/iej.12502
S.N. Bryan, and B.M. Grisham. Methods to detect nitric oxide and its metabolites in biological samples. Free Radical Biology and Medicine. 2007; 43(5):645-657. DOI: https://doi.org/10.1016/j.freeradbiomed.2007.04.026
A.P.C.P. Carlotti. Abordagem clínica dos distúrbios do equilíbrio ácido-base. Medicina (Ribeirao Preto Online). Revista USP. 2012; 45(2). DOI: https://doi.org/10.11606/issn.2176-7262.v45i2p244-262
CDC - Centers for Disease Control and Prevention. https://www.cdc.gov/drugresistance/index.html (2019), Accessed 30th March 2020.
M. Chen, X. Liu, and A. Fahr. Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: In vitro study with finite and infinite dosage application. International Journal of Pharmaceutics. 2011; 408(1-2):223- 234. https://doi.org/10.1016/j.ijpharm.2011.02.006 DOI: https://doi.org/10.1016/j.ijpharm.2011.02.006
W.S. Choi, G.P. Shin, H.J. Lee, and D.G. Kim. The regulatory effect of veratric acid on NO production in LPS-stimulated RAW264.7 macrophage cells. Cellular Immunoogyl. 2012; 280(2):164–170. https://doi.org/10.1016/j.cellimm.2012.12.007 DOI: https://doi.org/10.1016/j.cellimm.2012.12.007
CLSI- CLINICAL LABORATORY AND STANDARDS INSTITUTE. Reference method for broth dilution antifungal susceptibility testing yeasts 3ª ed. Approved standard M27-A3. Clinical Laboratory and Standards Institute. 2008. Wayne, PA.
M.D. Esposti. Measuring mitochondrial reactive oxygen species. Methods. 2002; 26(4):335–340. DOI: https://doi.org/10.1016/S1046-2023(02)00039-7
V. Fencl, A. Jabor, A. Kazda, and J. Figge. Diagnosis of metabolic acid-base disturbances in critically ill patients. American Journal of Respiratory and Critical care Medicine. 2000; 162(6):2246-2251. DOI: https://doi.org/10.1164/ajrccm.162.6.9904099
B.N. Freire, B. Naiana, L.C.S.R. Pires, H.P. Oliveira, and M.M. Costa. Atividade Antimicrobiana e Antibiofilme de Nanopartículas de Prata sobre Isolados de Aeromonas spp. obtidos de Organismos Aquáticos. Pesquisa Veterinária Brasileira. 2018; 38(2):244-249. http://dx.doi.org/10.1590/1678-5150-pvb-4805. DOI: https://doi.org/10.1590/1678-5150-pvb-4805
P. Hovorkova, K. Lalouckova, and E. Skrivanová. Determination of in vitro antibacterial activity of plant oils containing medium-chain fatty acids against Gram-positive pathogenic and gut commensal bacteria. Czech Journal of Animal Science. 2018(3):119-125. DOI: https://doi.org/10.17221/70/2017-CJAS
A.J. Huh, and Y.J. Kwon. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release. 2011; 156(2):128-145. DOI: https://doi.org/10.1016/j.jconrel.2011.07.002
L.M. JOBIM, V.C.R. Santos; S.F.C. Alves, M.R. Oliveira, P.C. Mostardeiro, R.M. Sagrillo, C.O de Souza Filho, M.F.L Garcia, F.M. Manica-Cattani, E.E. Ribeiro, and M.B.I da Cruz. Antimicrobial activity of Amazon Astrocaryumaculeatum extracts and its association to oxidative metabolism. Microbiological Research. 2014; 169(4):314-323. DOI: https://doi.org/10.1016/j.micres.2013.06.006
K. R. Joshi. Role of natural products against Microorganisms. American Journal of Clinical Microbiology and Antimicrobial. 2018; 1(1).
N. KARIMI, B. Ghanbarzadeh, H. Hamishehkar, B. Mehramuz, and H.S. Kafil. Antioxidant, Antimicrobial and Physicochemical Properties of Turmeric Extract-Loaded Nanostructured Lipid Carrier (CNL). Colloid and Interface Science Communications. 2018; 22:18–24. DOI: https://doi.org/10.1016/j.colcom.2017.11.006
M.L.W. Knetsch, and L.H. Koole. New strategies in the development of anti¬microbial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers Basel. 2011; 3:340–366. DOI: https://doi.org/10.3390/polym3010340
C. Li, R. Fu, C. Yu, Z. Li, H. Guan, D. Hu, D. Zhao, and L. Lu. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study. International Journal of Nanomedicine. 2013; 8:4131-4145. DOI: https://doi.org/10.2147/IJN.S51679
L.S.Q. LOPES, A.R. Vaucher, L.J. Giongo, A. Gundel, and V.C.R. Santos. Characterisation and anti-biofilm activity of glycerol monolaurate nanocapsules against Pseudomonas aeruginosa. Microbial Pathogenesis. 2019; 130:178-185. https://doi.org/10.1016/j.micpath.2019.03.007 DOI: https://doi.org/10.1016/j.micpath.2019.03.007
P.T.G. Machado, B.M. Valeirinho, L. Mazzarino, P.C.L Machado Filho, M. Maraschin, A.L.R. Cerri, and S. Kuhnen. Development of propolis Nanoparticles for the treatment og bovine mastitis: in vitro studies on antimicrobial and cytotoxic activities. Canadian Journal of Animal Science. 2019; 99(4):713-723. DOI: https://doi.org/10.1139/cjas-2018-0173
S. Makpol, A. Zainuddin, A.N. Rahim, M.A.Y. Yusof, and W.Z.W. Ngah. Alpha-tocopherol modulates hydrogen peroxide-induced DNA damage and telomere shortening of human skin fibroblasts derived from differently aged individuals. Planta Médica. 2010; 76(9):869 – 875. DOI: https://doi.org/10.1055/s-0029-1240812
M. Mokarizadeh, S.H. Kafil, S. Ghanbarzadeh, A. Alizadeh, and H. Hamishehkar. Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: a potential application in food stuffs as a natural preservative. Research in Pharmaceutical Sciences. 2017; 12(5):409-415. DOI: https://doi.org/10.4103/1735-5362.213986
M. Moreno-Sastre, M. Pastor, A. Esquisabel, E. Sans, M. Vinas, A. Fleischer, E. Polomino, D. Bachiller, and L.J. Pedraz. Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis. International Journal of Pharmaceutics. 2016; 498(1-2):263-273. DOI: https://doi.org/10.1016/j.ijpharm.2015.12.028
T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 1983; 65(1-2):55–63. DOI: https://doi.org/10.1016/0022-1759(83)90303-4
D. Mozaffarian, A. Ascherio, B.F. Hu, J.M. Stamfer, C.W. Willet, S.D. Siscovick, and B.E. Rimm. Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation. 2005; 111(2):157-164. DOI: https://doi.org/10.1161/01.CIR.0000152099.87287.83
M. Mühling, A. Bradford, W.J. Readman, J.P. Somerfield, and D.R. Handy. An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Marine Environmental Research. 2009; 68(5):278-283. DOI: https://doi.org/10.1016/j.marenvres.2009.07.001
A.M. Partearroyo, A.M. Urbanja, and M.F. Goni. Effective detergent/lipid ratios in the solubilization of phosphatidylcholine vesicles by Triton X‐100. FEBS Letters. 1992; 302(2):138-140. https://doi.org/10.1016/0014-5793(92)80424-F DOI: https://doi.org/10.1016/0014-5793(92)80424-F
T.O. Peulen, and K.J. Wilkinson. Diffusion of nanoparticles in a biofilm. Environmental Science e Technology. 2011; 45(8):3367-3373. DOI: https://doi.org/10.1021/es103450g
P. Piran, S.H Kafil, and H. Hamishehkar. Formulation of Menthol-Loaded Nanostructured Lipid Carriers to Enhance Its Antimicrobial Activity for Food Preservation. Advanced Pharmaceutical Bulletin. 2017; 7(2):261-268. DOI: https://doi.org/10.15171/apb.2017.031
A. Porse, J.L. Jahn, H.M.M. Ellabaan, and A.O.M. Sommer. Dominant resistance and negative epistasis can limit the co-selection of de novo resistance mutations and antibioticresistance genes. Nature Communications. 2020; 11(1199). DOI: https://doi.org/10.1038/s41467-020-15080-8
M.D. Rizk, M.B. Witte, and A. Barbul. Nitric oxide and wound healing. World Journal Surgery. 2004; 28:301-306. DOI: https://doi.org/10.1007/s00268-003-7396-7
A. Rossato, S.L. Silveira, S.Q.L. Lopes, P.W. de Souza Filho, F.L. Schaffer, V.C.R. Santos, and R.M. Sagrillo. Evaluation in vitro of antimicrobial activity of tucumã oil (Astrocaryum vulgare). Archives in Biosciences e Health. 2019; 1(1):99-112. https://doi.org/10.18593/abh.19701 DOI: https://doi.org/10.18593/abh.19701
M.R. Sagrillo, M.F.L. Garcia, C.O. de Souza Filho, F.M.M.M. Duarte, E.E. Ribeiro, C.F. Cadoná, and M.B.I da Cruz. Tucumã fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chemistry. 2015; 173:741–748. https://doi.org/10.1016/j.foodchem.2014.10.067 DOI: https://doi.org/10.1016/j.foodchem.2014.10.067
S.F. Siqueira, G.G. Rossi, K.A. Machado, S.F.C. Alves, C.V. Flores, D.V. Somavilla, A.V. Agertt, D.J. Siqueira, S.R. Dias, M.P. Copetti, R.M. Sagrillo, F.D. Voltar, and A.M.M. de Campos. Sulfamethoxazole derivatives complexed with metals: a new alternative against biofilms of rapidly growing mycobacteria. Biofouling. 2018; 34(8):893-911. DOI: https://doi.org/10.1080/08927014.2018.1514497
W.P.S. de Souza Filho, S.S. Homrich, M.P. Copetti, S.D. Peres, V.D. de Souza, C.R. Rieffel, K.A. Machado, F.A. Ourique, and R.M. Sagrillo. Effects of nanocapsules containing all-trans-retinoic acid under hemolytic and coagulation activity. Archives in Biosciences & Health. 2019; 1(1):125-138. DOI: https://doi.org/10.18593/abh.16726
F.J. Sutilli, M.D. Gatlin, M.B. Heinzmann, and B. Baldisserotto. Plant essential oils as fish diet additives: benefits on fish health and stability in feed. Reviews in Aquaculture. 2018; 10(3):716-726. https://doi.org/10.1111/raq.12197 DOI: https://doi.org/10.1111/raq.12197
A. Schwentker, Y. Vodovotz, R. Weller, and R.T. Billiar. Nitric oxide and wound repair: Role of cytokines? Nitric Oxide. 2002; 7(1):1-10. https://doi.org/10.1016/S1089-8603(02)00002-2 DOI: https://doi.org/10.1016/S1089-8603(02)00002-2
S. Stepanovic, D. Vukovic, V. Hola, D.G. Bonaventura, S. Djukic, I. Cirkovic, and F. Ruzicka. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Journal of Pathology, Microbiology and Immunology. 2007; 115(8):891-899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x DOI: https://doi.org/10.1111/j.1600-0463.2007.apm_630.x
B. Tarsillo, and R. Priefer. Proteobiotics as a new antimicrobial therapy. Microbial Pathogenesis. 2020; 142. https://doi.org/10.1016/j.micpath.2020.104093 DOI: https://doi.org/10.1016/j.micpath.2020.104093
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Aline Rossato, Larissa da Silva Silveira, Pâmella Scharamm Oliveira, Thobias Toniolo de Souza, Ana Paula Becker, Roger Wagner, Bruna Klein, Walter Paixão de Souza Filho, Roberto Christ Vianna dos Santos, Diego de Souza, Matheus Dellaméa Baldissera, Michele Rorato Sagrillo
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2021-04-28
Published 2021-05-01
Most read articles by the same author(s)
- Jiames Nunes Barcellos, Márcia da Silva Schmitz, Michele Rorato Sagrillo, Liana da Silva Fernandes, Production, characterization and biological evaluation of nanocapsules containing tricresol formalin and their comparison with the free form , International Journal for Innovation Education and Research: Vol. 9 No. 11 (2021): International Journal for Innovation Education and Research
- Pâmella Schramm Oliveira, Aline Rossato, Larissa da Silva Silveira, Cristian Mafra Ledur, Walter Paixão de Sousa Filho, Claudir Gabriel Kaufmann Junior, Sergio Roberto Mortari, Roberto Christ Vianna Santos, Guilherme Chagas Kurtz, Michele Sagrillo, Cláudia Lange dos Santos, Graphene oxide and reduced graphene oxide , International Journal for Innovation Education and Research: Vol. 9 No. 12 (2021): International Journal for Innovation Education and Research
- Larissa da Silva Silveira, Aline Rossato, Pâmella Scharamm Oliveira, Elisandra da Silva Pena da Fonseca, Luísa Donato Bortoluzzi, Wanessa de Carvalho Vieira, Guilherme Chagas Kurtz, Walter Paixão de Souza Filho, Diego de Souza, Liana da Silva Fernandes, Michele Sagrillo, Analysis of antimicrobial, antibiofilm, and healing activity of lipid nanocarriers based on Tucuman butter (Astrocaryum vulgare), fixed oils from microalgae chlorella Homosphaera and from UVA seed Vitis vinifera , International Journal for Innovation Education and Research: Vol. 10 No. 2 (2022): International Journal for Innovation Education and Research
- Luisa Donato Bortoluzzi, Walter Paixão de Sousa Filho, Kássia Caroline Figueredo, Michele Rorato Sagrillo, Biological in silico effects of ω-3 and its derivates during pregnancy and postpartum , International Journal for Innovation Education and Research: Vol. 10 No. 4 (2022): International Journal for Innovation Education and Research
- Josiane Fontoura dos Anjos, Heleno Carmo Borges Cabral, Michele Rorato Sagrillo, Éder Maiquel Simão, Presentation of the levels of Gene Expression of Titanium Dioxide Nanoparticles in Caco-2/HT29-MTX, SAE, and THP-1 cells, using Bioinformatics tools (in silico) , International Journal for Innovation Education and Research: Vol. 10 No. 7 (2022): International Journal for Innovation Education and Research