Production, characterization and biological evaluation of nanocapsules containing tricresol formalin and their comparison with the free form
DOI:
https://doi.org/10.31686/ijier.vol9.iss11.3556Keywords:
Antimicrobian activity, Cytotoxicity, Formaldehyde, NanotechnologyAbstract
Ethnopharmacological relevance: Tricresol formalin is composed of 90% formaldehyde and 10% cresols, highly volatile, has action at a distance, has been used in endodontics since the 20th century, and it remains widely used in Brazil in dental treatments, in necrotic teeth and with periapical lesions. However, there is still controversy regarding the biological compatibility under the conditions of clinical use of this drug, as the studies carried out on this substance and its components are not consistent with its clinical use. Formaldehyde is reported as a potential cytotoxic substance, because when in direct contact with cells it is responsible for a cytogenotoxic response, so an alternative to increase stability and ensure the safe administration of this compound in direct contact with cells would be nanoencapsulation. The use of nanomaterials provides numerous advantages, as the main interests are increased solubility and drug release control. Study objective: This study aimed to produce and characterize nanocapsules containing tricresol formalin as active, evaluating and comparing the in vitro cytotoxic effect of free and nanostructured forms.Materials and methods: a nanoparticle was produced, optimization of the preparation method and characterization of nanocapsules containing tricresol formalin. Were performed antimicrobiological tests, tests for cell viability through the tetrazolium method assay (MTT), free radical production, double strand DNA damage, and nitric oxide production. Results: The formulation used did not show toxic behavior against human peripheral blood mononuclear cells and showed a significant reduction in the toxicity of tricresol formalin in human fibroblast cells. The nanostructures showed values similar to the free form for antimicrobial activity. The nanoparticles showed mean particle size of 192.3 ± 2.5 nm, PDI of 0.101 ± 0.013, zeta potencial of -17.7 ± 2.8 mV, and pH of 5.48 ± 0.3. Conclusion: Thus, it is evident that nanocapsules containing tricresol formalin can become a safer alternative for use within endodontics.
References
Andronescu, E., and A.M. Grumezescu, Nanostructures for Oral Medicine, 1ª ed. Elsevier, 2017.
ANVISA, Agência Nacional de Vigilância Sanitária, Consulta Pública nº 43, de 7 de julho de 2004.
S.A.C. Araújo, M.F.S. Teixeira, T.V.M. Dantas, A.M. Miranda, F.E.S. Lima, V.S.P. Melo, A.R.F. Ricarte, and E.C. Costa, Avaliação in vitro da atividade citotóxica de drogas antivirais em fibroblastos caprinos, Ciência Animal, 2008, 18(1), 25-31.
J.N. Barcellos, L.S. Fernandes, M.S. Schmitz, M.R. Sagrillo, Nanotecnologia aplicada ao tricresol formalina para uso odontológico. 2020, Brasil. Patent: Privilégio de Inovação. Register number: BR1020200148524, title: "Nanotecnologia aplicada ao tricresol formalina para uso odontológico", Registration institution: INPI - Instituto Nacional da Propriedade Industrial. Deposit: 21/07/2020
A.W. Bauer, et al., Antibiotics susceptibility testing by a standardized single disk method, American Journal of Clinical Pathology, 1966, 45(4), 493-496. DOI: https://doi.org/10.1093/ajcp/45.4_ts.493
M.L. Cardoso, M.A. Alavarez, M.V. Aguirre, N.C. Brandan, and G.V. Quinteros De Lucas, Evaluación in vitro, de la acción del formocresol sobre la actividad fagocitaria, necrosis y apoptosis en macrófagos murinos, Reunion de Comunicaciones Cientificas y Tecnologicas, Local: Resistencia, Chaco, Argentina, 2005.
W.S. Choi, P.G. Shin, J.H. Lee, and G.D. Kim, The regulatory effect of veratric acid on NO production in LPS-stimulated RAW264.7 macrophage cells, Cell Immunol., 2012, 280(2), 164-170. DOI: https://doi.org/10.1016/j.cellimm.2012.12.007
Clinical And Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard M07-A10: 10 ed. Wayne: Clinical and Laboratory Standards Institute, 2015, 35(2).
R.V. Contri, M. Kaiser, F.S. Poletto, A.R. Pohlmann, and S.S. Guterres, Simultaneous Control of Capsaicinoids Release from Polymeric Nanocapsules, Journal of Nanoscience and Nanotechnology, 2011, 11(3), 2398-2406. DOI: https://doi.org/10.1166/jnn.2011.3521
J. Durner , A.J. Gow, J.S. Stamler, and J. Glazebrook, Ancient origins of nitric oxide signaling in biological systems, Proc Natl Acad Sci U S A, 1999, 96(25), 206- 207. DOI: https://doi.org/10.1073/pnas.96.25.14206
R.M. Esberard, S.N. De Queiroz, and A.A. dos Santos, Curativos com tricresol formalina: avaliação clínica e radiográfica em dentes humanos portadores de lesões periapicais crônicas / Dressings with tricresol formalin (formocresol), RGO (Porto Alegre), 1993, 41(4), 209-210, 212.
A. Falanga, M. Marchetti, S. Giovanelli, and T. Barbui, All-trans-retinoic acid counteracts endothelial cell procoagulant activity induced by a human promyelocytic leukemia-derived cell line (NB4), Blood, 1996, 87(2), 613-617. DOI: https://doi.org/10.1182/blood.V87.2.613.bloodjournal872613
H. Fessi, F. Puisiuex, J. P. Devissaguet, N. Ammoury, and S. Benita, Nanocapsule formulation by interfacial deposition following solvent displacement, International Journal of Pharmaceutics, 1989, 55(1), R1-R4. DOI: https://doi.org/10.1016/0378-5173(89)90281-0
R. Flora Filho, and B. Zilberstein, Óxido Nítrico: O Simples mensageiro percorrendo a complexidade.Metabolismo, síntese e funções, Rev. Assoc. Med. Bras., 2000, 46(3), 265-271. DOI: https://doi.org/10.1590/S0104-42302000000300012
D.F. Gabre, Manual do teste de tetrazólio, Brasília; AGIPLAN; 1986, p.85.
M. Goldberg, and A.J. Smith, Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering, Crit Rev Oral Biol Med., 2004, 15(1), 13-27. DOI: https://doi.org/10.1177/154411130401500103
R. Groot, and J. Loeffler, Roadmap report concerning the use of nanomaterials in the Medical & Health sector, 6th Framework Programm, European Comission, 2006.
S.S. Guterres, M.P. Alves, and A.R. Pohlmann, Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications, Drug Target Insights, 2007, 2, 147-157. DOI: https://doi.org/10.1177/117739280700200002
M.L. Hans, and A.M. Lowman, Biodegradable nanoparticles for drug delivery and targeting, Current Opinion in Solid State and Materials Science, 2002, 6(4), 319-327. DOI: https://doi.org/10.1016/S1359-0286(02)00117-1
C.H.J. Hauman, and R.M. Love, Biocompatibility of dental materials used in contemporary endodontic therapy: a review part 1, Intracanal drugs and substances, International Endodontic Journal, 2003, 36(2), 75-85. DOI: https://doi.org/10.1046/j.1365-2591.2003.00631.x
A. Kishen, Z. Shi, A. Shrestha, and K.G. Neoh, An Investigation on the Antibacterial and Antibiofilm Efficacy of Cationic Nanoparticulates for Root Canal Disinfection, Journal of Endodontics, 2008, 34(12), 1515-1520. DOI: https://doi.org/10.1016/j.joen.2008.08.035
H. Ko, Y. Jeong, and M. Kim, Cytotoxicities and genotoxicities of cements based on calcium silicate and of dental formocresol, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2017, 815, 28-34. DOI: https://doi.org/10.1016/j.mrgentox.2017.01.001
I.V. Krishna, et al., Cytotoxic studies of anti-neoplastic drugs on human lymphocytes-in vitro studies, Cancer Biomark, 2009, 5(6), 261-272. DOI: https://doi.org/10.3233/CBM-2009-0111
J. Leirskar, and K. Helgeland, Mechanism of toxicity of dental materials, International Endodontic Journal, 1981, 14, 42-47. DOI: https://doi.org/10.1111/j.1365-2591.1981.tb01058.x
Lopes H.P., and J.F. Siqueira Júnior, Medicação Intracanal, In: H.P. Lopes, J.F. Siqueira Júnior, Endodontia Biologia e Técnica: 2 ed. Rio de Janeiro: Guanabara Koogan S.A., 2004.
H. Lovschall, M. Eiskjaer, and D. Arenholt-Bindslev, Formaldehyde cytotoxicity in three human cell types assessed in three different assays, Toxicology in vitro, 2002, 16(1), 63-69. DOI: https://doi.org/10.1016/S0887-2333(01)00093-5
E.C.G. Mattos, Análise da biocompatibilidade e atividade antimicrobiana da pasta endodôntica composta por tetraciclina, tianfenicol e óxido de zinco, Dissertação de Mestrado – Faculdade de Odontologia do Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, 2008.
C.E. Mora-Huertas, H. Fessi, and A. Elaissari, Polymer-based nanocapsules for drug delivery, International Journal of Pharmaceutics, 2010, 385(1-2), 113-142. DOI: https://doi.org/10.1016/j.ijpharm.2009.10.018
D.R. Nogueira, M. Mitjans, M.B.C. Rolim, and M.P. Vinardell, Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies, Nanomaterials, 2014, 4, 454-484. DOI: https://doi.org/10.3390/nano4020454
M. Patil, D.S. Metha, and S. Guvva, Future impact of nanotechnology on medicine and dentistry, Journal Indian Soc Periodontol., 2008, 12(2), 34-40. DOI: https://doi.org/10.4103/0972-124X.44088
B.G.Z. Ramos, and T.B.C. Pasa, O desenvolvimento da nanotecnologia: cenário mundial e nacional de investimentos, Rev. Bras. Farm., 2008, 89(2), 95-101.
D.A. Ribeiro, M.E.A. Marques, and D.M.F. Salvadori, Lack of genotoxicity of formocresol, paramonochlorophenol and calcium hydroxide on mammalian cells by comet assay, Journal of Endodontics, 2004, 30(8), 593-596. DOI: https://doi.org/10.1097/01.DON.0000121614.10075.A3
C. Rota, F. Chignell, and R.P. Mason, Evidence for free radical formation during the oxidation of 2′-7′-dichlorofluorescin to the fluorescent dye 2′-7′-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements, Free Radical Biology and Medicine, 1999, 27(7-8), 873-881. DOI: https://doi.org/10.1016/S0891-5849(99)00137-9
M.R. Sagrillo, et al., Tucumã fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes, Food Chemistry, 2015, 173, 741-748. DOI: https://doi.org/10.1016/j.foodchem.2014.10.067
Santos J.S., Nanopartículas e suas aplicações cosméticas e farmacêuticas, Editora Pharmabooks, 2010.
E.J.N.L. Silva, et al., Antimicrobial evaluation of vapors of paramonoclorophenol and tricresol formalin using a new methodology, Revista Brasileira de Odontologia, Rio de Janeiro, 2012, 69(2), 255-257.
V. Stone, H. Johnston, and R.P.F. Schins, Development of in vitro systems for nanotoxicology: methodological considerations, Critical Reviews in Toxicology, 2009, 39(7), 613-626. DOI: https://doi.org/10.1080/10408440903120975
S.D. Thé, F.W. Bauerr, and M.D.E. Grood, Long-distance cytotoxicity of parachlorophenol and Formalin in vitro, Journal of Endodontics, 1976, 2(3), 78-80. DOI: https://doi.org/10.1016/S0099-2399(76)80201-4
M.I. Thomas, Avaliação in vitro da citotoxicidade do formocresol, do tricresol formalina e do formaldeído em três diferentes linhagens celulares, 2006, 49p, Dissertação (Mestrado) – Programa de Pós Graduação em Biologia Celular e Molecular da FaBio-PUCRS.
P.J. Watts, M.C. Davies, and C.D. Melia, Microencapsulation using emulsification/ solvent evaporation: an overview of techniques and applications, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7(3), 235-259.
S.Y. Yeung, W.H. Lan, C.S. Huang, C.P. Lin, C.P. Chan, M.C. Chang, and J.H. Jeng, Scavenging property of three cresol isomers against H2O2, hypochlorite, superoxide and hydroxyl radicals, Food and Chemical Toxicology, 2002, 40(10), 1403-1413. DOI: https://doi.org/10.1016/S0278-6915(02)00102-3
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Jiames Nunes Barcellos, Márcia da Silva Schmitz, Michele Rorato Sagrillo, Liana da Silva Fernandes
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2021-11-03
Published 2021-11-01
Most read articles by the same author(s)
- Aline Rossato, Larissa da Silva Silveira, Pâmella Scharamm Oliveira, Thobias Toniolo de Souza, Ana Paula Becker, Roger Wagner, Bruna Klein, Walter Paixão de Souza Filho, Roberto Christ Vianna dos Santos, Diego de Souza, Matheus Dellaméa Baldissera, Michele Rorato Sagrillo, Safety profile, antimicrobial and antibiofilm activities of a nanostructured lipid carrier containing oil and butter from Astrocaryum vulgare: in vitro studies , International Journal for Innovation Education and Research: Vol. 9 No. 5 (2021): International Journal for Innovation Education and Research
- Luisa Donato Bortoluzzi, Walter Paixão de Sousa Filho, Kássia Caroline Figueredo, Michele Rorato Sagrillo, Biological in silico effects of ω-3 and its derivates during pregnancy and postpartum , International Journal for Innovation Education and Research: Vol. 10 No. 4 (2022): International Journal for Innovation Education and Research
- Josiane Fontoura dos Anjos, Heleno Carmo Borges Cabral, Michele Rorato Sagrillo, Éder Maiquel Simão, Presentation of the levels of Gene Expression of Titanium Dioxide Nanoparticles in Caco-2/HT29-MTX, SAE, and THP-1 cells, using Bioinformatics tools (in silico) , International Journal for Innovation Education and Research: Vol. 10 No. 7 (2022): International Journal for Innovation Education and Research