Biological in silico effects of ω-3 and its derivates during pregnancy and postpartum

Authors

  • Luisa Donato Bortoluzzi Franciscan University https://orcid.org/0000-0001-7802-1555
  • Walter Paixão de Sousa Filho Franciscan University
  • Kássia Caroline Figueredo Universidade Federal de Santa Maria
  • Michele Rorato Sagrillo Franciscan University

DOI:

https://doi.org/10.31686/ijier.vol10.iss4.3702

Keywords:

DHA, EPA, in silico, molecular docking, pregnancy

Abstract

Pregnancy is a crucial time for the development of fetal health, so the mother’s diet must be healthy and balanced. Omega-3 is one of the most important nutrients during this time, as it has beneficial effects for both the mother and the fetus. The aim of this article is to evaluate the in silico biological effects of omega-3 and its derivatives during pregnancy and postpartum, using online software and molecular docking tools. These have been shown to be beneficial to the fetus, especially in the first trimester of pregnancy.

Downloads

Download data is not yet available.

Author Biographies

  • Luisa Donato Bortoluzzi, Franciscan University

    Biomedicine Course

  • Walter Paixão de Sousa Filho, Franciscan University

    Postgraduate Program in Nanoscience

  • Kássia Caroline Figueredo, Universidade Federal de Santa Maria

    Postgraduate Program in Pharmaceutical Sciences

  • Michele Rorato Sagrillo, Franciscan University

    Biomedicine Course, Franciscan University, Santa Maria, RS, Brazil

    Postgraduate Program in Nanoscience, Franciscan University, Santa Maria, RS, Brazil

References

An WS, et al. Omega-3 fatty acid supplementation attenuates oxidative stress, inflammation, and tubulointerstitial fibrosis in the remnant kidney. Am J Physiol Renal Physiol 2009; 297:895-903. DOI: https://doi.org/10.1152/ajprenal.00217.2009

Araújo DAC, et al. Gestação de alto-risco: prevalência de patologias e complicações materno-fetais. J Bras Ginecol 1996; 106(8):315-320.

Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 2006; 29:263-271. DOI: https://doi.org/10.1016/j.tins.2006.03.005

Innis SM. Dietary (n-3) fatty acid and brain development. J Nutr 2007; 137:855-859. DOI: https://doi.org/10.1093/jn/137.4.855

Balendiran GK, el tal. Crystal structure thermodynamic analysis of human brain fatty acid-binding protein. J Biol Chem 2000; 27045-27054. DOI: https://doi.org/10.1016/S0021-9258(19)61478-X

Belayev L, et al. Docosahexaenoic acid therapy of experimental ischemic stroke. Transl Stroke Res 2011; 2(1):33–41. DOI: https://doi.org/10.1007/s12975-010-0046-0

Belayev L, et al. A novel therapeutic strategy for experimental stroke using docosahexaenoic acid complexed to human albumin. Oilseeds fats Crops Lipids 2015; 23(1):1–6. DOI: https://doi.org/10.1051/ocl/2015023

Castro-Rodríguez DC, et al. Maternal interventions to prevent adverse fetal programming outcomes due to maternal malnutrition: Evidence in animal models. Placenta 2020; 102:49-54. DOI: https://doi.org/10.1016/j.placenta.2020.04.002

Costa NMB, Rosa COB. Alimentos funcionais – componentes bioativos e efeitos fisiológicos. Rio de Janeiro: Roca; 2010.

Cunningham P, McDermott L. Long Chain PUFA Transport in Human Term Placenta. J Nutr 2009; 139(4):636-639. DOI: https://doi.org/10.3945/jn.108.098608

Delano WL. Use of PyMOL as a communications tool for molecular science. J Am Chem Soc 2004; 228:U228-U230.

Duttaroy AK. Transport of fatty acids across the human placenta: a review. Prog Lipid Res 2009; 48(1):52-61. DOI: https://doi.org/10.1016/j.plipres.2008.11.001

Eady TN, et al. Docosahexaenoic acid signaling modulates cell survival in

experimental ischemic stroke penumbra and initiates long-term repair in young and

aged rats. PLoS One 2012; 7(10).

Gil-Sánchez A, et al. Current undestanding of placental fatty acid transport. Curr Opin Clin Nutr Metab Care 2012; 15(3):265-72. DOI: https://doi.org/10.1097/MCO.0b013e3283523b6e

Golding J, et al. High levels of depressive symptoms in pregnancy with low omega-3 fatty acid intake from fish. Epidemiol 2009; 20(4):598-603. DOI: https://doi.org/10.1097/EDE.0b013e31819d6a57

Greenberg JÁ, et al. Omega-3 fatty acid supplementation during pregnancy. Rev Obstet Gynecol 2008; 1(4):162–169.

Harris WS, Baack ML. Beyond building better brains: bridging the docosahexaenoic acid (DHA) gap of prematury. Am J Perinatol 2015; 35:1-7. DOI: https://doi.org/10.1038/jp.2014.195

Hong SH, et al. Docosahexaenoic acid improves behavior and attenuates blood–

brain barrier injury induced by focal cerebral ischemia in rats. Exp Transl Stroke Med 2015; 7(1):3. DOI: https://doi.org/10.1186/s13231-014-0012-0

Hosseini B, et al. The effect of omega-3 fatty acids, epa, and/or dha on male infertility: a systematic review and meta-analysis. J Diet Suppl 2019; 16(2): 245-256. DOI: https://doi.org/10.1080/19390211.2018.1431753

Innis SM. Dietary (n-3) fatty acid and brain development. J Nutr 2007a; 137:855-859. DOI: https://doi.org/10.1093/jn/137.4.855

Innis SM. Fatty acids and early human development. Early Hum Dev 2007b; 83(12):761-766. DOI: https://doi.org/10.1016/j.earlhumdev.2007.09.004

Innis SM. Impact of maternal diet on human milk composition and neurological development of infants. J Clin Nutr 2014; 99(3):734S-741S. DOI: https://doi.org/10.3945/ajcn.113.072595

Janssen CIF, Kiliaan AJ. Long-chain polyunsaturated fatty acid (LCPUFA) from genesis to senescence: the influence of LCPUFA on neuronal development, aging, and neurodegeneration. Prog Lipid Res 2014; 53:1-17. DOI: https://doi.org/10.1016/j.plipres.2013.10.002

Lager S, et al. Protein expression of fatty acid transporter 2 is polarized to the trophoblast basal plasma membrane and increased in placentas from overweight/obese women. Placenta 2016; 40:60-66. DOI: https://doi.org/10.1016/j.placenta.2016.02.010

Lee HS, et al. Application of binding free energy calculations to prediction of binding modes and affinities of MDM2 and MDMX inhibitors. J Chem Inf Model 2012; 52(7):1821–1832. DOI: https://doi.org/10.1021/ci3000997

Lipinski, CA, Lombardo F, Dominy BW, Feeney OS. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997; 23:3-25. DOI: https://doi.org/10.1016/S0169-409X(96)00423-1

Lipinski, CA. Lead and drug-like compounds: the rule-of-five revolution. Drug Discov Today: Technol 2004; 1(4), 337-341. DOI: https://doi.org/10.1016/j.ddtec.2004.11.007

Lucke C, et al. Spin-system heterogeneities indicate a selected-fit mechanism in fatty acid binding to heart-type fatty acid-binding protein (H-FABP).

Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 2007; 76(3):391-396.

Moda TL. Desenvolvimento de modelos in sílico de propriedades de ADME para triagem de novos candidatos a fármacos [dissertação]. São Carlos (SP): Universidade de São Paulo; 2007.

Pan Y, et al. Fatty Acid-Binding Protein 5 Facilitates the Blood–Brain Barrier Transport of Docosahexaenoic Acid. Mol Pharm 2015; 12(12):4375-4385. DOI: https://doi.org/10.1021/acs.molpharmaceut.5b00580

Park K, et al. ω-6 (18:2) and ω-3 (18:3) fatty acids in reconstituted high-density lipoproteins show different functionality of anti-atherosclerotic properties and embryotoxicity. J Nutri Biochem 2015; 26(12):1613-1621. DOI: https://doi.org/10.1016/j.jnutbio.2015.08.008

Pereira WL. Síntese e avaliação das atividades fitotóxica e antiproliferativa de isobenzofuran-1(3H)-onas C-3 funcionalizadas [dissertação]. Viçosa (MG): Universidade Federal de Viçosa; 2013.

Quiroga R, Villarreal MA. Vinardo: A Scoring Function Based on Autodock Vina Improves Scoring, Docking, and Virtual Screening. Ed. Heinrich Sticht. PLoS One 2016; 67 e0155183. DOI: https://doi.org/10.1371/journal.pone.0155183

Raschka S. Molecular docking, estimating free energies of binding, and AutoDock's semi-empirical force field. ResearchGate 2014.

Salari Z, et al. Embryo-toxicity of docosahexaenoic and eicosapentaenoic acids: In vivo and in silico investigations using the chick embryo model. Biomed Pharmacother 2021; 136:111218. DOI: https://doi.org/10.1016/j.biopha.2021.111218

Schunck, WH, et al. Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases. Pharmacol Therapeut 2018; 183:177–204. DOI: https://doi.org/10.1016/j.pharmthera.2017.10.016

Scorletti E, Byrne CD. Omega-3 fatty acids and non-alcoholic fatty liver disease: evidence of efficacy and mechanism of action. Mol Aspects Med 2018; 64: 135-146. DOI: https://doi.org/10.1016/j.mam.2018.03.001

Shityakov S, Forster C. In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter. Adv Appl Bioinform Chem 2014; 7:23-36. DOI: https://doi.org/10.2147/AABC.S63749

Silva, VB. Estudos de modelagem molecular e relação estrutura atividade da oncoproteína hnRNP K e ligantes [dissertação]. Ribeirão Preto (SP): Faculdade de Ciências Farmacêuticas de Ribeirão Preto; 2007.

Souza SD. Estudo de colinesterases aplicando técnicas de QSAR-2D (QSAR) e docking molecular [tese]. Rio de Janeiro (RJ): Faculdade de Farmácia da Universidade Federal do Rio de Janeiro; 2012.

Storch J, Corsico B. The emerging functions and mechanisms of mammalian fatty acidbinding proteins. Annu Rev Nutr 2008; 28:73-95. DOI: https://doi.org/10.1146/annurev.nutr.27.061406.093710

Tracy TS, et al. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A Activity) during pregnancy. Am J Obstet Gynecol 2005; 192(2):633-639. DOI: https://doi.org/10.1016/j.ajog.2004.08.030

Travassos GH, Barros MO. Contributions of in virtuo and in sílico experiments for the future of empirical studies in software engineering. Proceedings of the WSESE03 2003; 189-200.

Trott O, Olson AJ. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J Comput Chem 2010; 31(2):455-461. DOI: https://doi.org/10.1002/jcc.21334

Trotta RJ, et al. Effects of nutrient restriction and melatonin supplementation from mid-to-late gestation on maternal and fetal small intestinal carbohydrase activities in sheep. Domest Anim Endocrinol 2021; 74:106555. DOI: https://doi.org/10.1016/j.domaniend.2020.106555

Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med 2005; 352(21):2211–2221. DOI: https://doi.org/10.1056/NEJMra032424

Zhang T, et al. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipid. Prog Lipid Res 2019; 75:100997. DOI: https://doi.org/10.1016/j.plipres.2019.100997

Published

2022-04-01

How to Cite

Donato Bortoluzzi, L., Filho, W. P. de S., Figueredo, K. C., & Sagrillo, M. R. (2022). Biological in silico effects of ω-3 and its derivates during pregnancy and postpartum. International Journal for Innovation Education and Research, 10(4), 34-49. https://doi.org/10.31686/ijier.vol10.iss4.3702
Received 2022-02-21
Accepted 2022-03-23
Published 2022-04-01

Most read articles by the same author(s)