Wood residues from Zygia racemosa (Ducke) Barneby & J.W. Grimes: Secondary metabolites, physical properties and anatomical aspects of the wood
Secondary metabolites, physical properties and anatomical aspects of Zygia racemosa
DOI:
https://doi.org/10.31686/ijier.vol10.iss4.3721Keywords:
Fabaceae, angelin-rajado, triterpenes, steroidsAbstract
Zygia racemosa (Ducke) Barneby & J.W. Grimes (syn. Pithecellobium racemosum Ducke) is a large tree with its geographic distribution restricted to South America (Brazil, Colombia, Guyana, French Guiana, Peru and Suriname). It has a wide occurrence in the Brazilian Amazon and is abundant in campinarana and terra firme forest. In the present work, we evaluated the secondary metabolites, physical properties and anatomical aspects of wood residues of the species. The chromatographic fractionations of the hexane extract led to the isolation of steroids identified as spinastenone (1) and spinaterol (2). The methanol extract provided the steroids 1 and nonanoate-cholest-7, 22-dien-3β-ol (3), the triterpenes oleanolic acid (4) and 3β,21β-dihydroxyolean-12-en-28-oic acid (5). The basic density found was 0.81 g/cm3 and the anisotropic factor was 1.90, which confirms its excellent quality. The acquisition of a sample of wood residues from Zygia racemosa was an opportunity to generate knowledge regarding the secondary metabolism, the physical properties and the anatomical aspects of the wood of this species. The steroids and triterpenes identified suggest that they are associated with plant defense in Z. racemosa.
References
Ashour, M., Wink, M., Gershenzon, J. and Wink, M. (2010). Biochemistry of terpenoids: monoterpenes, sesquiterpenes, and diterpenes. In Wink, M. (Ed.); Biochemistry of plant secondary metabolism, Blackwell, Annual Plant Reviews Vol. 2, 2nd ed. DOI: https://doi.org/10.1002/9781444320503.ch5
Barneby, R. C. and Grimes, J. W. (1997). Silk tree, guanacaste, monkey' s earring: A generic system for the Synandrous Mimosaceae of the Americas. Memoirs of the New York Botanical Garden, 74, 60–131. The New York Botanical Garden Bronx, Ed.
Barrera-Necha, L., Bautista-Baños, S., Bravo-Luna, L., Bermudez-Torres, K., Garcia-Suarez, F., Jimenez-Estrada, M. and Reyes-Chilpa, R. (2003). Antifungal activity against postharvest fungi by extracts and compounds of Pithecellobium dulce seeds (huamuchil). Acta Horticulturae, 2, 761–766. https://doi.org/ 10.17660/ActaHortic.2003.628.96 DOI: https://doi.org/10.17660/ActaHortic.2003.628.96
Dewick, Paul M. 2002. Medicinal Natural Products: A Biosynthetic Approach. John Wiley & Sons, LTD, 2nd ed. DOI: https://doi.org/10.1002/0470846275
Gomes, D. C. F. and Alegrio, L. V. (1998). Acyl steryl glycosides from Pithecellobium cauliflorum. Phytochemistry, 49, 1365–1367. https://doi.org/10.1016/S0031-9422(97)00925-4 DOI: https://doi.org/10.1016/S0031-9422(97)00925-4
Gunasekera, S. P., CordelL, G. A. and Farnsworth, N. R. (1982). Constituents of Pithecellobium multiflorum. Journal of Natural Products, 45, 651–651. https://doi.org/10.1021/np50023a027 DOI: https://doi.org/10.1021/np50023a027
Heinzen, R. A., Scidmore, M. A., Rockey, D. D. and Hackstadt, T. (1996). Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infection and Immunity, 64, 796–809. DOI: https://doi.org/10.1128/iai.64.3.796-809.1996
Katekhaye, S. D. and Laddha, K. S. (2015). Coumarins and a triterpenoid from Pithecellobium dulce. Chemistry of Natural Compounds, 51, 956–958. https://doi.org/10.1007/s10600-015-1460 DOI: https://doi.org/10.1007/s10600-015-1460-z
Katekhaye, S. D., Paul, A. and Laddha, K. S. (2016). Lupane analogue from bark of Pithecellobium dulce and in vitro α-glucosidase and α-amylase enzyme inhibition assay of extract for potential antidiabetic activity. Chemistry of Natural Compounds, 52, 359–362 https://doi.org/10.1007/ s10600-016-1645-0 DOI: https://doi.org/10.1007/s10600-016-1645-0
Khan, I. A., Clark, A. M. and Mcchesney J. D. (1997). Antifungal activity of a new triterpenoid glycoside from Pithecellobium racemosum (M.) Pharmaceutical Research, 14, 358–361. https://doi.org/10.1023/a: 1012010407824 DOI: https://doi.org/10.1023/A:1012010407824
Mahdavi, A., Moradi, P. and Mastinu, A. (2020). Variation in terpene profiles of Thymus vulgaris in water deficit stress response. Molecules, 25, 1091, 17p. https://doi.org/10.3390/molecules 25051091 DOI: https://doi.org/10.3390/molecules25051091
Melo, L. E. S., Silva, J. B. Nascimento, C. C., Ferreira, A. G. and Lima, M. P. (2020). Identification of phenolic compounds and their relationship to the natural resistance of wood from Dipteryx polyphylla Huber and Acacia mangium Willd. International Journal for Innovation Education and Research, 8: 471-480. DOI: https://doi.org/10.31686/ijier.vol8.iss12.2860
Mimaki, Y., Harada, H., Sakuma, H. C., Haraguchi, M., Yui, S., Kudo, T., Yamazaki, M. and Sashida, Y. (2004). Contortisiliosides A ± G: isolation of seven new triterpene bisdesmosides from Enterolobium contortisiliquum and their cytotoxic activity. Helvetica Chimica Acta, 87, 851–865. https://doi.org/ 10. 1002/hlca.200490083 DOI: https://doi.org/10.1002/hlca.200490083
Nigam, S. K., Gopal, M., Uddin, R., Yoshikawa, K., Kawamoto, M., and Arihara, S. (1997). Pithedulosides A-G, oleanane glycosides from Pithecellobium dulce. Phytochemistry, 44, 1329–1334, 1997. https://doi. org/10.1016/S0031-9422(96)00725-X DOI: https://doi.org/10.1016/S0031-9422(96)00725-X
REFLORA - Plantas do Brasil:Resgate Histórico e Herbário Virtual para o Conhecimento e Conservação da Flora Brasileira. http://reflora.jbrj.gov.br. Accessed November, 16, 2021.
Rico-Arce, M. L. (1994). Four new species of Zygia(Leguminosae: Mimosoideae). Kew Bulletin, 49, 547–554. https://doi.org/10.2307/4114482 DOI: https://doi.org/10.2307/4114482
Sahu, N. P. and Mahato, S. B. (1994). Anti-inflammatory triterpene saponins of Pithecellobium dulce: characterization of an echinocystic acid bisdesmoside. Phytochemistry, 37, 1425–1427. https://doi.org/ 10.1016/s0031-9422(00)90425-4 DOI: https://doi.org/10.1016/S0031-9422(00)90425-4
Saxena, V. K. and Singhal, M. (1998). Novel triterpenoidal saponin from the seeds of Pitheceilobium dulce. Indian Academy of Sciences, 110, 409-414. DOI: https://doi.org/10.1007/BF02872573
Seebacher, W., Simic, N., Weis, R., Saf, R. and Kunert, O. (2003). Complete assignments of 1H and 13CNMR resonances of oleanolic acid, 18a-oleanolic acid, ursolic acid and their 11-oxoderivatives. Magnetic Resonance in Chemistry, 41, 636–638. https://doi.org/10.1002/mrc.1214 DOI: https://doi.org/10.1002/mrc.1214
Silva, L. N., Zimmer, K. R., Macedo, A. J. and Trentin, D. S. (2016). Plant Natural products targeting bacterial virulence factors. Chemical Reviews, 116, 9162–9236. https://doi.org/10.1021/acs. chemrev.6b00184 DOI: https://doi.org/10.1021/acs.chemrev.6b00184
Szakiel, A., Grzelak, A., Dudek, P. and Janiszowska, W. (2003). Biosynthesis of oleanolic acid and its glycosides in Calendula officinalis suspension culture. Plant Physiology and Biochemistry, 41, 271–275. https://doi.org/10.1016/S0981-9428(03)00018-4 DOI: https://doi.org/10.1016/S0981-9428(03)00018-4
Thimmappa, R., Geisler, K.; Louveau, T., O’Maille, P. and Osbourn, A. (2014). Triterpene biosynthesis in plants. Annual Review of Plant Biology, 65, 225–257. https://doi.org/10.1146/ annurev-arplant-050312-12022 DOI: https://doi.org/10.1146/annurev-arplant-050312-120229
Tropicos - Missouri Botanical Garden. Available from: http://www.tropicos.org. Accessed on 16/11/ 2021.
Yoshikawa, K., Suzaki, Y., Tanaka, M., Arihara, S. and Nigam, S. K. (1997). Three acylated saponins and a related compound from Pithecellobium dulce, 20, 1269–1274. https://doi.org/ 10.1021/np9703555 DOI: https://doi.org/10.1021/np9703555
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Priscila Brasil Augusto de Souza, Claudete Catanhede Nascimento, Jorge Alves Freitas, Maria da Paz Lima

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2022-03-24
Published 2022-04-01
Most read articles by the same author(s)
- Henrique Cativo dos Santos, Samirimi Januario Silva, Claudete Catanhede do Nascimento, Jorge Alves de Freitas , João Vicente Braga de Souza, Ana Claúdia Alves Cortez, Antonio Gilberto Ferreira, Sérgio Scherrer Thomasi, Marcia Ortiz Mayo Marques, Roselaine Facanali , Maria da Paz Lima, Chemical investigation, antifungal activity and anatomical aspects of Protium puncticulatum J.F Macbr. and Protium tenuifolium (Engl.) Engl , International Journal for Innovation Education and Research: Vol. 9 No. 5 (2021): International Journal for Innovation Education and Research
- Loretta Ennes Sabóia de Melo, Jhonis Bentes Silva , Claudete Catanhede do Nascimento, Antonio Gilberto Ferreira, Maria da Paz Lima, Identification of phenolic compounds and their relationship to the natural resistance of wood from Dipteryx polyphylla Huber and Acacia mangium Willd , International Journal for Innovation Education and Research: Vol. 8 No. 12 (2020): International Journal for Innovation Education and Research
- Jennifer Araújo de Oliveira Lima, Willian Hayasida, Mauro Galucio Garcia, Jorge Alves Freitas, Claudete Catanhede Nascimento, Luiz Henrique Keng Queiroz Junior, Maria da Paz Lima, Chemical investigation and anatomical aspects of wood residues from Hymenaea courbaril L, Platymiscium ulei Harms, Hymenolobium petraeum Ducke , International Journal for Innovation Education and Research: Vol. 10 No. 1 (2022): International Journal for Innovation Education and Research