Wood residues from Zygia racemosa (Ducke) Barneby & J.W. Grimes: Secondary metabolites, physical properties and anatomical aspects of the wood

Secondary metabolites, physical properties and anatomical aspects of Zygia racemosa

Authors

  • Priscila Brasil Augusto de Souza Instituto de Pesquisa Ambiental da Amazônia image/svg+xml
  • Claudete Catanhede Nascimento Instituto Nacional de Pesquisas da Amazônia
  • Jorge Alves Freitas Instituto Nacional de Pesquisas da Amazônia
  • Maria da Paz Lima a:1:{s:5:"en_US";s:51:"Instituto Nacional de Pesquisas da Amazônia - INPA";}

DOI:

https://doi.org/10.31686/ijier.vol10.iss4.3721

Keywords:

Fabaceae, angelin-rajado, triterpenes, steroids

Abstract

Zygia racemosa (Ducke) Barneby & J.W. Grimes (syn. Pithecellobium racemosum Ducke) is a large tree with its geographic distribution restricted to South America (Brazil, Colombia, Guyana, French Guiana, Peru and Suriname). It has a wide occurrence in the Brazilian Amazon and is abundant in campinarana and terra firme forest. In the present work, we evaluated the secondary metabolites, physical properties and anatomical aspects of wood residues of the species. The chromatographic fractionations of the hexane extract led to the isolation of steroids identified as spinastenone (1) and spinaterol (2). The methanol extract provided the steroids 1 and nonanoate-cholest-7, 22-dien-3β-ol (3), the triterpenes oleanolic acid (4) and 3β,21β-dihydroxyolean-12-en-28-oic acid (5). The basic density found was 0.81 g/cm3 and the anisotropic factor was 1.90, which confirms its excellent quality. The acquisition of a sample of wood residues from Zygia racemosa was an opportunity to generate knowledge regarding the secondary metabolism, the physical properties and the anatomical aspects of the wood of this species. The steroids and triterpenes identified suggest that they are associated with plant defense in Z. racemosa.

Downloads

Download data is not yet available.

Author Biographies

  • Priscila Brasil Augusto de Souza, Instituto de Pesquisa Ambiental da Amazônia

    Laboratório de Química de Produtos Naturais, Instituto Nacional de Pesquisas da Amazônia, 69067-375, Manaus, AM, Brazil

  • Claudete Catanhede Nascimento, Instituto Nacional de Pesquisas da Amazônia

    Laboratório de Tecnologia da Madeira, Instituto Nacional de Pesquisas da Amazônia, 69067-375, Manaus, AM, Brazil

     

  • Jorge Alves Freitas, Instituto Nacional de Pesquisas da Amazônia

    Laboratório de Tecnologia da Madeira, Instituto Nacional de Pesquisas da Amazônia, 69067-375, Manaus, AM, Brazil

References

Ashour, M., Wink, M., Gershenzon, J. and Wink, M. (2010). Biochemistry of terpenoids: monoterpenes, sesquiterpenes, and diterpenes. In Wink, M. (Ed.); Biochemistry of plant secondary metabolism, Blackwell, Annual Plant Reviews Vol. 2, 2nd ed. DOI: https://doi.org/10.1002/9781444320503.ch5

Barneby, R. C. and Grimes, J. W. (1997). Silk tree, guanacaste, monkey' s earring: A generic system for the Synandrous Mimosaceae of the Americas. Memoirs of the New York Botanical Garden, 74, 60–131. The New York Botanical Garden Bronx, Ed.

Barrera-Necha, L., Bautista-Baños, S., Bravo-Luna, L., Bermudez-Torres, K., Garcia-Suarez, F., Jimenez-Estrada, M. and Reyes-Chilpa, R. (2003). Antifungal activity against postharvest fungi by extracts and compounds of Pithecellobium dulce seeds (huamuchil). Acta Horticulturae, 2, 761–766. https://doi.org/ 10.17660/ActaHortic.2003.628.96 DOI: https://doi.org/10.17660/ActaHortic.2003.628.96

Dewick, Paul M. 2002. Medicinal Natural Products: A Biosynthetic Approach. John Wiley & Sons, LTD, 2nd ed. DOI: https://doi.org/10.1002/0470846275

Gomes, D. C. F. and Alegrio, L. V. (1998). Acyl steryl glycosides from Pithecellobium cauliflorum. Phytochemistry, 49, 1365–1367. https://doi.org/10.1016/S0031-9422(97)00925-4 DOI: https://doi.org/10.1016/S0031-9422(97)00925-4

Gunasekera, S. P., CordelL, G. A. and Farnsworth, N. R. (1982). Constituents of Pithecellobium multiflorum. Journal of Natural Products, 45, 651–651. https://doi.org/10.1021/np50023a027 DOI: https://doi.org/10.1021/np50023a027

Heinzen, R. A., Scidmore, M. A., Rockey, D. D. and Hackstadt, T. (1996). Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infection and Immunity, 64, 796–809. DOI: https://doi.org/10.1128/iai.64.3.796-809.1996

Katekhaye, S. D. and Laddha, K. S. (2015). Coumarins and a triterpenoid from Pithecellobium dulce. Chemistry of Natural Compounds, 51, 956–958. https://doi.org/10.1007/s10600-015-1460 DOI: https://doi.org/10.1007/s10600-015-1460-z

Katekhaye, S. D., Paul, A. and Laddha, K. S. (2016). Lupane analogue from bark of Pithecellobium dulce and in vitro α-glucosidase and α-amylase enzyme inhibition assay of extract for potential antidiabetic activity. Chemistry of Natural Compounds, 52, 359–362 https://doi.org/10.1007/ s10600-016-1645-0 DOI: https://doi.org/10.1007/s10600-016-1645-0

Khan, I. A., Clark, A. M. and Mcchesney J. D. (1997). Antifungal activity of a new triterpenoid glycoside from Pithecellobium racemosum (M.) Pharmaceutical Research, 14, 358–361. https://doi.org/10.1023/a: 1012010407824 DOI: https://doi.org/10.1023/A:1012010407824

Mahdavi, A., Moradi, P. and Mastinu, A. (2020). Variation in terpene profiles of Thymus vulgaris in water deficit stress response. Molecules, 25, 1091, 17p. https://doi.org/10.3390/molecules 25051091 DOI: https://doi.org/10.3390/molecules25051091

Melo, L. E. S., Silva, J. B. Nascimento, C. C., Ferreira, A. G. and Lima, M. P. (2020). Identification of phenolic compounds and their relationship to the natural resistance of wood from Dipteryx polyphylla Huber and Acacia mangium Willd. International Journal for Innovation Education and Research, 8: 471-480. DOI: https://doi.org/10.31686/ijier.vol8.iss12.2860

Mimaki, Y., Harada, H., Sakuma, H. C., Haraguchi, M., Yui, S., Kudo, T., Yamazaki, M. and Sashida, Y. (2004). Contortisiliosides A ± G: isolation of seven new triterpene bisdesmosides from Enterolobium contortisiliquum and their cytotoxic activity. Helvetica Chimica Acta, 87, 851–865. https://doi.org/ 10. 1002/hlca.200490083 DOI: https://doi.org/10.1002/hlca.200490083

Nigam, S. K., Gopal, M., Uddin, R., Yoshikawa, K., Kawamoto, M., and Arihara, S. (1997). Pithedulosides A-G, oleanane glycosides from Pithecellobium dulce. Phytochemistry, 44, 1329–1334, 1997. https://doi. org/10.1016/S0031-9422(96)00725-X DOI: https://doi.org/10.1016/S0031-9422(96)00725-X

REFLORA - Plantas do Brasil:Resgate Histórico e Herbário Virtual para o Conhecimento e Conservação da Flora Brasileira. http://reflora.jbrj.gov.br. Accessed November, 16, 2021.

Rico-Arce, M. L. (1994). Four new species of Zygia(Leguminosae: Mimosoideae). Kew Bulletin, 49, 547–554. https://doi.org/10.2307/4114482 DOI: https://doi.org/10.2307/4114482

Sahu, N. P. and Mahato, S. B. (1994). Anti-inflammatory triterpene saponins of Pithecellobium dulce: characterization of an echinocystic acid bisdesmoside. Phytochemistry, 37, 1425–1427. https://doi.org/ 10.1016/s0031-9422(00)90425-4 DOI: https://doi.org/10.1016/S0031-9422(00)90425-4

Saxena, V. K. and Singhal, M. (1998). Novel triterpenoidal saponin from the seeds of Pitheceilobium dulce. Indian Academy of Sciences, 110, 409-414. DOI: https://doi.org/10.1007/BF02872573

Seebacher, W., Simic, N., Weis, R., Saf, R. and Kunert, O. (2003). Complete assignments of 1H and 13CNMR resonances of oleanolic acid, 18a-oleanolic acid, ursolic acid and their 11-oxoderivatives. Magnetic Resonance in Chemistry, 41, 636–638. https://doi.org/10.1002/mrc.1214 DOI: https://doi.org/10.1002/mrc.1214

Silva, L. N., Zimmer, K. R., Macedo, A. J. and Trentin, D. S. (2016). Plant Natural products targeting bacterial virulence factors. Chemical Reviews, 116, 9162–9236. https://doi.org/10.1021/acs. chemrev.6b00184 DOI: https://doi.org/10.1021/acs.chemrev.6b00184

Szakiel, A., Grzelak, A., Dudek, P. and Janiszowska, W. (2003). Biosynthesis of oleanolic acid and its glycosides in Calendula officinalis suspension culture. Plant Physiology and Biochemistry, 41, 271–275. https://doi.org/10.1016/S0981-9428(03)00018-4 DOI: https://doi.org/10.1016/S0981-9428(03)00018-4

Thimmappa, R., Geisler, K.; Louveau, T., O’Maille, P. and Osbourn, A. (2014). Triterpene biosynthesis in plants. Annual Review of Plant Biology, 65, 225–257. https://doi.org/10.1146/ annurev-arplant-050312-12022 DOI: https://doi.org/10.1146/annurev-arplant-050312-120229

Tropicos - Missouri Botanical Garden. Available from: http://www.tropicos.org. Accessed on 16/11/ 2021.

Yoshikawa, K., Suzaki, Y., Tanaka, M., Arihara, S. and Nigam, S. K. (1997). Three acylated saponins and a related compound from Pithecellobium dulce, 20, 1269–1274. https://doi.org/ 10.1021/np9703555 DOI: https://doi.org/10.1021/np9703555

Downloads

Published

2022-04-01

How to Cite

Souza, P. B. A. de, Nascimento, C. C. ., Freitas, J. A. ., & Lima, M. da P. (2022). Wood residues from Zygia racemosa (Ducke) Barneby & J.W. Grimes: Secondary metabolites, physical properties and anatomical aspects of the wood: Secondary metabolites, physical properties and anatomical aspects of Zygia racemosa . International Journal for Innovation Education and Research, 10(4), 257-267. https://doi.org/10.31686/ijier.vol10.iss4.3721
Received 2022-03-03
Accepted 2022-03-24
Published 2022-04-01

Most read articles by the same author(s)