Identification of phenolic compounds and their relationship to the natural resistance of wood from Dipteryx polyphylla Huber and Acacia mangium Willd

Authors

  • Loretta Ennes Sabóia de Melo Instituto Nacional de Pesquisas da Amazônia - INPA
  • Jhonis Bentes Silva
  • Claudete Catanhede do Nascimento
  • Antonio Gilberto Ferreira
  • Maria da Paz Lima a:1:{s:5:"en_US";s:51:"Instituto Nacional de Pesquisas da Amazônia - INPA";}

DOI:

https://doi.org/10.31686/ijier.vol8.iss12.2860

Keywords:

Isoflavonoids, Monocyclic phenolics, Fabaceae, Spectroscopic techniques

Abstract

Flavonoids are the phenolic compounds that are predominant in the Fabaceae family, and isoflavonoids are especially recognized for their contribution to the natural resistance of wood from species of this family. Herein, we investigated the phenolic compounds from extracts of wood residues from the Fabaceae species Dipteryx polyphylla Huber and Acacia mangium Willd. A phytochemical study of D. polyphylla led to isolation and identification of isoflavans such as 3’,7-dihydroxy-4'-methoxy-isoflavan (1), 2’,8-dihydroxy-4’,7-dimethoxy-isoflavan (2), 2’,7-dihydroxy-4’-methoxyisoflavan (3) and 3’,8-dihydroxy-4’,7-dimethoxy isoflavan (4). Compounds 1 and 4 are new findings. A. mangium gave monocyclic phenolics, such as ferulic acid (6), methylparaben (7) and 4-hydroxybenzaldehyde (8); flavonol melatoxetin (9) as well as fatty acid esters of spinasterol (5). The phenolic compounds that were identified contribute to the knowledge regarding the natural resistance of its woods, thus aggregating value for solid residues and plantation species recommended for reforestation

Downloads

Download data is not yet available.

References

Abreu, R. L. S. and Silva, K. E. S. (2000). Resistência natural de dez espécies madeireiras da Amazônia ao ataque de Nasutitermes macrocephalus (Silvestre) e N. surinamensis (Holmgren) (Isoptera: Termitidae). Revista Árvore 24, 229-234. ISSN 1806-9088

Attias, N., Siqueira, M. F. and Bergallo, H. G. (2013). Acácias Australianas no Brasil: histórico, formas de uso e potencial de invasão. Biodiversidade Brasileira 3, 74-96. ISSN 2236-2886

Barros, S. V. S., Nascimento, C. C. and Azevedo, C. P. (2012). Caracterização tecnológica da madeira de três espécies florestais cultivadas no amazonas: alternativa para produção de lenha. Floresta 42, 725-732. ISSN 1982-4688 DOI: https://doi.org/10.5380/rf.v42i4.22514

Barry, K. M., Mihara, R., Davies, N. W., Mitsunaga, T. and Mohammed, C. L. (2005). Polyphenols in Acacia mangium and A. auriculiformis heartwood with reference to heart rot. Journal of Wood Science 51, 615-621. https://doi.org/10.1007/s10086-005-0707-x DOI: https://doi.org/10.1007/s10086-005-0707-x

Castro, J. P., Perígolo, D. M., Bianchi, M. L., Mori, F. A., Fonseca, A. S., Alves, I. C. N. and Vasconcellos, F. J. (2015). Uso de espécies amazônicas para envelhecimento de bebidas destiladas: análises física e química da madeira. Cerne 21, 319-327. https://doi.org/10.1590/01047760201521021567 DOI: https://doi.org/10.1590/01047760201521021567

Costa, F. N., Cardoso, R. P., Mendes, C. S., Rodrigues, P. R. G. and Reis, A. R. S. (2019). Natural resistance of seven Amazon woods to xylophagous termite Nasutitermes octopilis (Banks). Floresta e Ambiente 26, e20170145. https://doi.org/10.1590/2179-8087.014517 DOI: https://doi.org/10.1590/2179-8087.014517

Jesus, M. A., Morais, J. W., Abreu, R. L. S. and Cardias, M. F. C. (1998). Durabilidade natural de 46 espécies de madeira amazônica em contato com o solo em ambiente florestal. Scientia Forestalis 54, 81-92. https://doi.org/10.1590/01047760201521021567 DOI: https://doi.org/10.1590/01047760201521021567

Harborne, J. B. and Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry 55, 481-504. https://doi.org/10.1016/S0031-9422(00)00235-1 DOI: https://doi.org/10.1016/S0031-9422(00)00235-1

Kaducová, M., Monje-Rueda, M. D., García-Calderón, M., Pérez-Delgado, M. C., Eliášová, A., Gajdošová, S., Petrul’ová, V., Betti, M., Márquez A. J. and Pal’ove-Balang, P. (2019). Induction of isoflavonoid biosynthesis in Lotus japonicus after UV-B irradiation. Journal of Plant Physiology 236, 88-95. https://doi.org/10.1016/j.jplph.2019.03.003 DOI: https://doi.org/10.1016/j.jplph.2019.03.003

Luz, S. M., Souza-Filho, A. P. S., Guilohn, G. M. S. P. and Vilhena, K. S. S. (2010). Atividade alelopática de substâncias químicas isoladas da Acacia mangium e suas variações em função do pH. Planta Daninha 28, 479-487. ISSN 0100-8358 DOI: https://doi.org/10.1590/S0100-83582010000300004

Martínez-Sotres, C., López-Albarrán, P., Cruz-de-León, J., García-Moreno, T., Rutiagaquiñones, J. G., Vázquez-Marrufo, G., Tamariz-Mascarúa, J. and Herrera-Bucio, R. (2012). Medicarpin, an antifungal compound identified in hexane extract of Dalbergia congestiflora Pittier heartwood. International Biodeterioration and Biodegradation 69, 38-40. https://doi.org/10.1016/j.ibiod.2011.11.016 DOI: https://doi.org/10.1016/j.ibiod.2011.11.016

Morimoto, M., Fukumoto, H., Hiratani, M., Chavasir, W. and Komai, K. (2006). Insect antifeedants, pterocarpans and pterocarpol in heartwood of Pterocarpus macrocarpus Kruz. Bioscience, Biotechnology and Biochemistry 70, 1864-1868. https://doi.org/10.1271/bbb.60017 DOI: https://doi.org/10.1271/bbb.60017

Masai, M., Arakawa, M., Iwaya, K., Aoki, T., Nakagawa, T., Ayabe, S. and Uchiyama, H. (2013). Discriminative phytoalexin accumulation in Lotus japonicus against symbiotic and non-symbiotic microorganisms and related chemical signals. Bioscience Biotechnology. Biochememistry 77, 1773-1775. https://doi.org/10.1271/bbb.130209 DOI: https://doi.org/10.1271/bbb.130209

Pietarinen, S. P., Willför, S. M., Sjöholm, R. E. and Holmbom, B. R. (2005). Bioactive phenolic substances in important tree species. Part 3: Knots and stemwood of Acacia crassicarpa and A. mangium. Holzforschung 59, 94-101. https://doi.org/10.1515/HF.2005.015 DOI: https://doi.org/10.1515/HF.2005.015

Pizzo, B., Pometti, C. L., Charpentier, J., Boizot, P. and Saidman, N. B. O. (2011). Relationships involving several types of extractives of five native argentine wood species of genera Prosopis and Acacia. Industrial Crops and Products 34, 851-859. https://doi.org/10.1016/j.indcrop.2011.02.003 DOI: https://doi.org/10.1016/j.indcrop.2011.02.003

Ponce, A., Bompadre, M., Scervino, J. M. and Ocampo, J. A. (2009). Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochemical Systematics and Ecology 37, 245-253. https://doi.org/10.1016/j.bse.2009.03.010 DOI: https://doi.org/10.1016/j.bse.2009.03.010

Ragasa, C. Y. and Lim, K. (2005). Sterols from Cucurbita maxima. Philippine Journal of Science 134, 83-87. ISSN 0031-7683

Reyes-chilpa, R., Gomez-Garibay, F., Moreno-Torres, G., Jimenez-Estrada, M. and Quiroz-Vaásquez, R. I. (1998). Flavonoids and isoflavonoids with antifungal properties from Platymiscium yucatanum heartwood. Holzforschung 52, 459-462. https://doi.org/10.1515/hfsg.1998.52.5.459 DOI: https://doi.org/10.1515/hfsg.1998.52.5.459

Schiavo, J. A. and Martins, M. A. (2003). Produção de mudas de acácia colonizadas com micorrizas e rizóbio em diferentes recipientes. Pesquisa Agropecuária Brasileira 38, 173-178. https://doi.org/ 10.1590/S0100-204X2003000200002 DOI: https://doi.org/10.1590/S0100-204X2003000200002

Schultz, T. P. and Nicholas, D. D. (2000). Naturally durable heartwood: evidence for a proposed dual defensive function of the extractives. Phytochemistry 54, 47-52. https://doi.org/10.1016/s0031-9422(99)00622-6 DOI: https://doi.org/10.1016/S0031-9422(99)00622-6

Tropicos - Missouri Botanical Garden. Available from: http://www.tropicos.org. Accessed on 09/11/ 2020

Tulod, A. M., Casas, J. V., Marin, R. A. and Ejoc, J. A. B. (2017). Diversity of native woody regeneration in exotic tree plantations and natural forest in Southern Philippines. Forest Science and Technology 13, 31-40. https://doi.org/10.1080/21580103.2017.1292958 DOI: https://doi.org/10.1080/21580103.2017.1292958

Veitch, N. C. (2013). Isoflavonoids of the Leguminosae. Natural Product Reports 30, 988-1027. https://doi.org/10.1039/c3np70024k DOI: https://doi.org/10.1039/c3np70024k

Zhao, X., Mei, W., Gong, M., Zuo, W., Bai, H. and Dai, H. (2011). Antibacterial activity of the flavonoids from Dalbergia odorifera on Ralstonia solanacearum. Molecules 16, 9775-9782. https://doi.org/10.3390/molecules16129775 DOI: https://doi.org/10.3390/molecules16129775

Downloads

Published

2020-12-01

How to Cite

de Melo, L. E. S. ., Silva , J. B. ., do Nascimento, C. C. ., Ferreira, A. G. ., & Lima, M. da P. (2020). Identification of phenolic compounds and their relationship to the natural resistance of wood from Dipteryx polyphylla Huber and Acacia mangium Willd. International Journal for Innovation Education and Research, 8(12), 471-480. https://doi.org/10.31686/ijier.vol8.iss12.2860
Received 2020-11-26
Accepted 2020-12-04
Published 2020-12-01

Most read articles by the same author(s)