Suppression of Anatase to Rutile Phase Transformation of Niobium doped TiO2 Synthesized by High Temperature Diffusion Technique

Authors

  • Ogacho A.A University of Nairobi, Kenya
  • Ajuoga P University of Nairobi, Kenya
  • Aduda B.O University of Nairobi, Kenya

DOI:

https://doi.org/10.31686/ijier.vol3.iss6.388

Keywords:

Anatase, rutile, phase transformation, grain growth

Abstract

The effects of niobium doping (for doping concentrations: 0.02 – 0.06 at. % Nb5+) on the crystal structure of TiO2 prepared by high temperature diffusion method were investigated. The samples were characterized using energy dispersive X-ray fluorescence (EDXRF) and X- ray diffraction (XRD) spectroscopy to investigate the chemical compositions, phase compositions and crystallinity of the thin films respectively. Despite the expected high reutilization at high temperatures (>600oC), XRD results confirmed a significant suppression of anatase to rutile phase transformation at even a higher synthesis (850oC) temperature. Grain growth retardation was also observed in niobium doped TiO2, results which were attributed to Nb5+ substitution of lattice Ti4+.

Downloads

Download data is not yet available.

Author Biographies

  • Ogacho A.A, University of Nairobi, Kenya

    Department of Physics

  • Ajuoga P, University of Nairobi, Kenya

    Department of Physics

  • Aduda B.O, University of Nairobi, Kenya

    Department of Physics

References

Anukuprasert T., Saiwan C. and Traversa E., The Development of Gas Sensor for Carbon Monoxide Monitoring using Nanostructure of Nb–TiO2, Science and Technology of Advanced Materials, 6 (2005) 359 – 363. DOI: https://doi.org/10.1016/j.stam.2005.02.020

Bakardjieva S, Subrt J, Stengl V, Dianez M. J and Sayagues M. J., Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Applied Catalysis B: Environmental 58 (2005) 193 – 202. DOI: https://doi.org/10.1016/j.apcatb.2004.06.019

Basca R. R. and Kiwi J., Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid, Appl. Catal. B., 16 [1] (1998) 19 – 29. DOI: https://doi.org/10.1016/S0926-3373(97)00058-1

Feroni M., Carotta M. C., Guidi V., Martinelle G., Rouconi F., Richard O., Van Dyck D. and Landuyi Van J., Structural Characterization of Nb–TiO2 nanosized thick Films for Gas Sensing Applications, Sensors and Actuators B, 68 (2000) 140 – 145. DOI: https://doi.org/10.1016/S0925-4005(00)00474-3

Gamboa J. A. and Pasquevich D. M, Effect of Chlorine Atmosphere on the Anatase-Rutile Transformation, J. Am. Ceram Soc. 75 (1992) 2934 - 2938. DOI: https://doi.org/10.1111/j.1151-2916.1992.tb04367.x

Gopal M, Moberly Chan W. J and De Jonghe L. C., Room temperature synthesis of crystalline metal oxides. J. Mat. Sci. 32 (1997) 6001- 6008. DOI: https://doi.org/10.1023/A:1018671212890

Hanaor D and Sorrell C. C., Review of the anatase to rutile phase transformation, J. Mat. Sci. 46 (2011) 855 - 874 DOI: https://doi.org/10.1007/s10853-010-5113-0

Hanaor D. A. H., Assadi M. H.N., Aibng Yu, Li Sean, and Sorrell C. C., Ab Initio Study of Phase Stability in Doped TiO2, Comutational Mechanics 50 [2] (2012) 185 – 194. DOI: https://doi.org/10.1007/s00466-012-0728-4

Hanaor D., Triani G and Sorrell C. C., Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin films, Surface and Coatings Technology 205 (2011) 3658 – 3664. DOI: https://doi.org/10.1016/j.surfcoat.2011.01.007

Hari Sutrisno and Sunarto, Polymorphic Transformation of Titanium Dioxide Caused by Heat Treatment of Protonic Leptdocrocite Titanate, lndo. J. Chem. 10 (2) (2010) 143 - 148 DOI: https://doi.org/10.22146/ijc.21451

Hurum D. C, Agrios A. G, Gray K. A, Rajh T and Thurnauer M. C, Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Physical Chem B 107 (2003) 4545 – 4549. DOI: https://doi.org/10.1021/jp0273934

Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S, Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Applied Catalysis B: Environmental, 42 [4] (2003) 403 – 409. DOI: https://doi.org/10.1016/S0926-3373(02)00269-2

Iida Y. and Ozaki S., Grain Growth and Phase Transformation of Titanium Oxide During Calcination, J. Am. Ceram Soc. 44 (1961) 120 – 127. 14. Jinsoo Kim, Ki Chang Song, Sandra Foncillas, Sotiris E. Pratsinis, Dopants for synthesis of stable bimodally porous titania, J. Eur. Ceramic Soc. 21 (2001) 2863 - 2872 DOI: https://doi.org/10.1016/S0955-2219(01)00222-9

Kumar K.N. P., Keizer K., Burggraaf A. J., Stabilization of the porous texture of nanostructured titania by avoiding a phase transformation, J. Mat. Sci. Let. 13 (1994) 59 – 61. DOI: https://doi.org/10.1007/BF00680274

Mattson Andreas, Michael Leideborg, Karin Larsson, Gunner Westin and Lars Osterlund, Absorption and Solar Light Decomposition of Acetone on Anatase TiO2 and Niobium Doped TiO2 Thin films, Journal of Physical Chemistry B, 110 (2006)1210 –1220. DOI: https://doi.org/10.1021/jp055656z

Mohd Hasmizam Razali, Ahmad-Fauzi M. N., Abdul Rahman Mohamed, and Srimala Morphological, Structural and Optical Properties Study of Transition Metal Ions Doped TiO2 Nanotubes Prepared by Hydrothermal Method, International Journal of Materials, Mechanics and Manufacturing, Vol. 1, No. 4, (2013) 314 – 318. DOI: https://doi.org/10.7763/IJMMM.2013.V1.68

Nagaveni K., Hegde M. S., Ravishankar N., Subbanna G. N., and Giridhar Madras, Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity , Langmuir 20 [7] (2004) 2900 – 2907.19. Ohno T, Sarukawa K and Matsumura M., Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New journal of chemistry 26 (2002) 1167- 1170. DOI: https://doi.org/10.1021/la035777v

Penn R. L. and Banfield J. F., Formation of rutile nuclei at anatase {112} twin interfaces and the phase transformation mechanism in nanocrystalline titania, American Mineralogist 84 (1999) 871 – 876. DOI: https://doi.org/10.2138/am-1999-5-621

Ranjit K. T., Cohen H., Willner I., Bossmann S., Lanthanide oxide-doped titanium dioxide: Effective photocatalysts for the degradation of organic pollutants, J. Mat. Sci. 34 (1999) 5273 - 5280. DOI: https://doi.org/10.1023/A:1004780401030

Reidy D.J., Holmes J.D., Morris M.A., The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2, J. Eur. Ceram Soc. 26 (2006) 1527 - 1534 DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.03.246

Riyas S., Krishnan G., Mohan Das P. N., Anatase - rutile transformation in doped titania under argon and hydrogen atmospheres, Adv. Appl. Ceram. 106 (2007) 255 – 264. DOI: https://doi.org/10.1179/174367607X202645

Ruiz A., Dezanneau G., Arbiol J., Cornet A. and Morante J. R., Study of the Influence of Nb Content and Sintering Temperature on TiO2 Sensing Films, Thin Solid Films, 436 (2003) 90 – 94. DOI: https://doi.org/10.1016/S0040-6090(03)00515-7

Scherrer Paul, Bestimmung der Grösse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Göttngen, Mathematisch-Physikalische Klasse 2 (1918) 98 - 100.

Schmitt M. and Aegerter A. M., Electronic Properties of Pure and Doped Nb2O5 Coatings and Devices, Electrochemical Actuators, 46 (2001) 2105 – 2111. DOI: https://doi.org/10.1016/S0013-4686(01)00380-2

Sclafani A and Herrman J. M., Comparison of the Photoelectronic and Photocatalytic activities of various anatase and rutile forms of titania, J. Physical Chem. 100 (1996) 13655 - 13661 DOI: https://doi.org/10.1021/jp9533584

Scotter E., Vilanova X., Llobet E., Stankova M. and Correig X., Niobium doped Titania Nanopowders for Gas Sensor Applications, Journal of Optoelectronic and Advanced Materials, 7 [3] (2005)1395 – 1398.

Serpone Nick, Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts? J. Phys. Chem. B, 110 [48], (2006) 24287 – 24293. DOI: https://doi.org/10.1021/jp065659r

Sood S. M. S and Gouma P., Polymorphism in nanocrystalline binary metal oxides, Nanomaterials and Energy, Vol. 2 Issue No. NME2 (2013) 82–96; http://dx.doi.org/10.1680/nme.12.00037 DOI: https://doi.org/10.1680/nme.12.00037

Spurr R. A and Myers H., Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Analytical Chemistry 29 [5] (1957) 759 – 761. DOI: https://doi.org/10.1021/ac60125a006

Syarif D. G., Miyashita A, Yamaki T, Sumita T, Choi Y, Itoh H, Preparation of anatase and rutile thin films by controlling oxygen partial pressure, Appl. Surf. Sci. 193[1–4] (2002) 287 – 292. DOI: https://doi.org/10.1016/S0169-4332(02)00532-9

Zhang Yu-Hong, Reller Armin, Phase transformation and grain growth of doped nanosized titania, Mat. Sci. Eng. C 19 (2002) 323 – 326. DOI: https://doi.org/10.1016/S0928-4931(01)00409-X

Downloads

Published

2015-06-01

How to Cite

A.A, O., P, A., & B.O, A. (2015). Suppression of Anatase to Rutile Phase Transformation of Niobium doped TiO2 Synthesized by High Temperature Diffusion Technique. International Journal for Innovation Education and Research, 3(6), 140-146. https://doi.org/10.31686/ijier.vol3.iss6.388