Effects of climate change on the sugarcane productivity

Authors

  • Raul Andres Martinez Uribe Sao Paulo State University, Brazil
  • Letícia Martins Lupino
  • Patrícia Chiara Silvério
  • GUstavo Henrique Gravatim Costa

DOI:

https://doi.org/10.31686/ijier.vol5.iss4.680

Keywords:

agricultural modeling, bioenergy, saccharum officinarum, scenario simulation

Abstract

The progressive increase in global temperature causes concern worldwide, which is constantly looking for ways to minimize the impacts caused to the environment as a result of human activities in the last decades.As a result, “clean energy” has been the solution to control pollution and global warming, as they cause low environmental impacts.Today, biofuels and mainly bioethanol derived essentially from sugarcane replaces fossil fuels very efficiently.Due to the high influence and relevance that sugarcane exerts nationally, in relation to the economic and environmental issue, it is vitally important to think about how its production system will be in scenarios that consider climate change.In order to analyze this system is necessary to obtain data, not always easily obtained in field research, for this reason, the agricultural modeling through the simulation of scenarios can contribute by predicting situations and helping to make future decisions.Therefore, an APSIM® simulation model was proposed, validating it with local data and later the effects of climate change on sugarcane productivity were studied through agricultural modeling simulating three (3) scenarios with change in average air temperature and CO2 concentration:S1 without climate change (current), S2 (year 2020) with change of + 0.24°C and increase of +26 ppm of CO2, S3 (year 2040) with change of +0.84°C and increase of +114 ppm of CO2 and S4 (year of 2080) with change of + 1.14°C and increase of +201 ppm of CO2.The studied climatic change scenarios may lead to higher stalks and sugar productivity per hectare due to higher rates of CO2 fixation and temperature increase.

Downloads

Download data is not yet available.

References

Allen, L.H.; Jones, P.H.; Jones, J.W. Rising atmospheric CO2 and evapotranspiration. In: Advances in evapotranspiration. St. Joseph: ASAE, 1985.p.13-27

Berlato, M. A.; Fontana, D. C.; Bono, L. Tendência temporal da precipitação pluvial anual no Estado do Rio Grande do Sul. Revista Brasileira de Agrometeorologia, Santa Maria, 1995, v. 3, p. 111-113.

BNDES, Banco Nacional de Desenvolvimento Econômico e Social e CGEE, Centro de Gestão e Estudos Estratégicos (Org.). Bioetanol de canca-de-açucar: energia para o desenvolvimento sustentável. Rio de Janeiro: BNDES, 2008.

C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, L.L. White IPCC, 2014: climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the Fifth Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014, p. 1132

Gouvêa, J. R. F.; Sentelhas, P. C.; Gazzola, S. T.and Santos, M C. Climate changes and technological advances:impacts on sugarcane productivity in tropical southern brazil. Sci. agric. (Piracicaba, Braz.). 2009, vol.66, n.5, pp.593-605. DOI: https://doi.org/10.1590/S0103-90162009000500003

Houghton, J. T.; MeiraFilho, L. C.; Callander, B. A.; Harris, N.; Katternberg, A.; Maskell, K. Climate change 1995: the science of climate change: contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change. P. 584 .Cambridge (England): Cambridge University Press. 1996.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE.Climate change 2007: the physical Science Basis -Contribution of Working Group I to the Fourth assessment report of the IntergovernmentalPanel on Climate Change.Cambridge: University Press, 2007. DOI: https://doi.org/10.1017/CBO9780511546013

Karl, T. R.; Knight, R. W.; Easterling, D. R.; Quayle, R. G. Indices of climate change for the United States. American Meteorological Society Bulletin, Boston, 1996, v. 77, n. 2, p. 279-292. DOI: https://doi.org/10.1175/1520-0477(1996)077<0279:IOCCFT>2.0.CO;2

Keating, B. A.; Robertson, R. C.; Muchow, N. I. Huth modelling sugarcane production systems development and performance of the sugarcane module. Field Crops Research, 1999, v. 61, p. 253 – 271. DOI: https://doi.org/10.1016/S0378-4290(98)00167-1

Machado, P.L.O. DE A. Carbono do solo e a mitigação da mudança climática global. Revista Química nova, Rio de Janeiro, 2005, v. 28, n. 2, p. 329-334. DOI: https://doi.org/10.1590/S0100-40422005000200026

Mccown. R. L.; Hammer, G. L.; Hargreaves, J. N. G.; Holzworth, D. P. and Freebairn, D. M. APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems, 1996, v. 50, p. 255-271. DOI: https://doi.org/10.1016/0308-521X(94)00055-V

Melo, S. B.; Galon, L.; Souza, E. F. M.; Rezende, M. L.; Renato, N. S. Aquecimento global e um estudo da produtividade potencial da cana-de-açúcar para a região de São Paulo. Caatinga, Mossoró, 2007, v. 20, n. 4, p. 10-17.

Morettin, P.A.; Bussab, W.O. Estatística básica,Saraiva, 5.ed., São Paulo, 2003, p.526.

Ng Kee Kwong K. F. &Deville J. Application of 5N-labelled urea to sugar cane through a drip-irrigation system in Mauritius. Fertilizer Research, 1994, v. 39, p. 223. DOI: https://doi.org/10.1007/BF00750250

Owensby, C. E.; Ham, J. M.; Knap, A. K.; Bremer, D.; Auen, L. M. Water vapor fluxes and their impact under elevated CO2 in a C4-tallgrass prairie. Global Change Biology, 1997, v.3, p.189-195. DOI: https://doi.org/10.1046/j.1365-2486.1997.00084.x

Streck, N.A. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield. Ciência Rural, 2005, v.35, n.3, p.730-740. DOI: https://doi.org/10.1590/S0103-84782005000300041

Thorburn. P. J.; Dart, I. K.; Biggs, I. M.; Baillie, C. P.; Smith, M. A.; Keating, B. A. The fate of nitrogen applied to sugarcane by trickle irrigation. Irrigation Science, 2003, v. 22, p. 201-209. DOI: https://doi.org/10.1007/s00271-003-0086-2

Vu, J. C. V.; Allen Jr., L. H.; Gesch, R. W. Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2. Plant Science, 2006, v.171, p.123-131. DOI: https://doi.org/10.1016/j.plantsci.2006.03.003

Vu, J. C. V; Allen Jr., L.H. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature. Journal of Plant Physiology, 2009, v.166, p.1141-1151. DOI: https://doi.org/10.1016/j.jplph.2009.01.003

Willmott, C. J. On the validation of models. Physical Geography, 1981, v. 2, p. 184-194. DOI: https://doi.org/10.1080/02723646.1981.10642213

Downloads

Published

2017-04-01

How to Cite

Uribe, R. A. M., Lupino, L. M., Silvério, P. C., & Costa, G. H. G. (2017). Effects of climate change on the sugarcane productivity. International Journal for Innovation Education and Research, 5(4), 160-166. https://doi.org/10.31686/ijier.vol5.iss4.680