Antioxidant effect of Physalis angulata fruit on cells exposed to 2,4- dichlorophenoxyacetic acid

Authors

  • Roberta Cattaneo Horn University of Cruz Alta, Brazil
  • GABRIELA TASSOTTI GELATTI University of Cruz Alta, Brazil
  • JANA KOEFENDER University of Cruz Alta, Brazil
  • DIEGO PASCOAL GOLLE University of Cruz Alta, Brazil
  • MARIANA SPANEMBERG MAYER University of Cruz Alta, Brazil
  • TIAGO ANTONIO HERINGER University of Cruz Alta, Brazil
  • MAURICIO BATISTELLA PASINI University of Cruz Alta, Brazil
  • ANA CAROLINE TISSIANI University of Cruz Alta, Brazil
  • AIME CUNHA ARRUDA University of Cruz Alta, Brazil
  • LAURA RUBIN University of Cruz Alta, Brazil
  • RAFAELA DA ROSA RECKTENWALD University of Cruz Alta, Brazil
  • PAULO RICARDO MOREIRA University of Cruz Alta, Brazil
  • CAROLINE ALEGRANSI University of Cruz Alta, Brazil

DOI:

https://doi.org/10.31686/ijier.vol7.iss8.1696

Keywords:

2,4-dichlorophenoxyacetic acid, Oxygen reactive species, Physalis

Abstract

Several in vitro studies have described the erythrocyte toxicity mechanism response to the 2,4-dichlorophenoxyacetic acid (2,4-D) and its metabolites, strongly related to oxidative stress. Compounds such as ascorbic acid and flavonoids, present in various fructiferous plants like Physalis angulata L.- Solanaceae, are exogenous sources of antioxidants, which have aroused interest because of its beneficial biological effects to health by capturing oxygen reactive species. Here, was investigated the cytotoxic effects of the 2,4-D in human erythrocytes exposed to this herbicide and treated with the juice of P. angulata fruits. Analyzing the oxidant and antioxidant mechanisms in these cells in vitro, was demonstrated that the damage mechanism by the Physalis juice occurred at the level of cellular proteins and membranes, altering levels of endogenous antioxidants components such as reduced glutathione and uric acid, and exogenous like vitamin C. Our results indicate new insights into the mechanism of human erythrocytes response exposed to the P. angulata juice, providing wayforward to future studies of cytotoxicity.

Downloads

Download data is not yet available.

References

Anvisa – Agência Nacional de Vigilância Sanitária. 2018. Nota técnica nº 24. Disponível em: <http://portal.anvisa.gov.br/documents/219201/4340788/Nota+T%C3%A9cnica+Final+2-4D.pdf/a0ef4bb6-db71-42ae-9174-2fa7e2c9b95f>. (accessed 09/12/18).

Barreiro, E. 2016. Role of protein carbonylation in skeletal muscle mass loss associated with chronic conditions. Proteomes, 4(2), 18. https://doi.org/10.3390/proteomes4020018

Bongiovanni, B., Ferri, A., Brusco, A., Rassetto, M., Lopez, L. M., de Duffard, A. E., and Duffard, R. 2011. Adverse effects of 2, 4-dichlorophenoxyacetic acid on rat cerebellar granule cell cultures were attenuated by amphetamine. Neurotoxicity research, 19(4), 544-555. https://doi.org/10.1007/s12640-010-9188-9

Burns, R. E. 1971. Method for estimation of tannin in grain sorghum 1. Agronomy Journal, 63(3), 511-512. doi:10.2134/agronj1971.00021962006300030050x

Camlofski, A. M. D. O. 2014. Avaliação dos compostos bioativos e caracterização das pectinas do fruto de Physalis angulata L. (Unpublished doctoral dissertation). Universidade Federal do Paraná, Brasil.

Catalgol, B. K., Ozden, S., and Alpertunga, B. 2007. Effects of trichlorfon on malondialdehyde and antioxidant system in human erythrocytes. Toxicology in vitro, 21(8), 1538-1544. DOI: 10.1016/j.tiv.2007.06.002

Chandra, S., and Gonzalez de Mejia, E. 2004. Polyphenolic compounds, antioxidant capacity, and quinone reductase activity of an aqueous extract of Ardisia compressa in comparison to mate (Ilex paraguariensis) and green (Camellia sinensis) teas. Journal of agricultural and food chemistry, 52(11), 3583-3589. DOI: 10.1021/jf0352632

Conceição, K. N., Sampaio, F. A. S. A., da Silva, V. F., and da Silva, A. O. 2017. Poder antioxidante de carotenoides, flavonoides e vitamina e na prevenção da arteriosclerose. Revista Ciência & Saberes-Facema, 2(4), 320-324.

Dalle-Donne, I., Colombo, G., Gornati, R., Garavaglia, M. L., Portinaro, N., Giustarini, D., ... and Milzani, A. 2017. Protein carbonylation in human smokers and mammalian models of exposure to cigarette smoke: focus on redox proteomic studies. Antioxidants & redox signaling, 26(8), 406-426. https://doi.org/10.1089/ars.2016.6772

Ellman, G. L. 1959. Tissue sulfhydryl groups. Archives of biochemistry and biophysics, 82(1), 70-77. https://doi.org/10.1016/0003-9861(59)90090-6

Embrapa - Empresa Brasileira de Pesquisa Agropecuária. 2006. Ministério da Agricultura, Pecuária e Abastecimento. https://www.embrapa.br. (accessed 09/12/18).

Ferreira, L. M. D. S. L., do Vale, A. E., de Souza, A. J., Leite, K. B., Sacramento, C., Moreno, M. L. V., ... and Grassi, M. F. R. 2019. Anatomical and phytochemical characterization of Physalis angulata L.: A plant with therapeutic potential. Pharmacognosy Research, 11(2), 171. DOI: 10.4103/pr.pr_97_18

Macedo Neto, D., Froehner, S., and Machado, K. S. 2012. Assessment of transport of 2, 4-dichlorophenoxyacetic acid using a lysimeter. Química Nova, 35(9), 1809-1813. http://dx.doi.org/10.1590/S0100-40422012000900020

Furman, A.E.F. 2011. Ação antioxidante de extrato padronizado de Ginkgo biloba em eritrócitos de indivíduos normais e de portadores de anemia falciforme, submetido à sobrecarga oxidativa, in vitro. (Unpublished doctoral dissertation). Universidade Federal do Paraná, Brasil.

Gaschler, M. M., and Stockwell, B. R. 2017. Lipid peroxidation in cell death. Biochemical and biophysical research communications, 482(3), 419-425. https://doi.org/10.1016/j.bbrc.2016.10.086

Gelatti, G. T., Tissiani, A. C., Mayer, M. S., Felippin, T., Gewehr, D. M., Koefender, J., ... and Horn, R. C. 2018. In Vitro Antioxidant Potential of Baccharis trimera and Baccharis articulata Infusions in Postmenopausal Women. International Journal of Innovation Education and Research, 6(7), 99-112. https://doi.org/10.31686/ijier.Vol6.Iss7.1060

Greer, J.P., Foerster, J., and Lukens, J.N. 2003. Wintrobe’s Clinical Hematology. Philadelphia: Lippincott Williams & Wilkins Publishers.

Kleniewska, P., and Pawliczak, R. 2017. The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomedicine & Pharmacotherapy, 94, 100-108. https://doi.org/10.1016/j.biopha.2017.07.066

Lashin, I. I., and Elhaw, M. H. 2016. Evaluation of secondary metabolites in callus and tissues of Physalis peruviana. International Journal of Modern Botany, 1, 10-17. DOI: 10.5923/j.ijmb.20160601.03

Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., ... and Stadtman, E. R. 1990. [49] Determination of carbonyl content in oxidatively modified proteins. In Methods in enzymology (Vol. 186, pp. 464-478). Academic Press. https://doi.org/10.1016/0076-6879(90)86141-H

Liu, Z., Zhou, T., Ziegler, A. C., Dimitrion, P., and Zuo, L. 2017. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative medicine and cellular longevity, 2017. https://doi.org/10.1155/2017/2525967

Murussi, C., Horn, R. C., Santi, A., Clasen, B. E., Reis, G., Souza, D., ... and Loro, V. L. 2014. Changes in oxidative markers, endogenous antioxidants and activity of the enzyme acetylcholinesterase in farmers exposed to agricultural pesticides-a pilot study. Ciência Rural, 44(7), 1186-1193. http://dx.doi.org/10.1590/0103-8478cr20130516

Nwani, C. D., Lakra, W. S., Nagpure, N. S., Kumar, R., Kushwaha, B., and Srivastava, S. K. 2010. Toxicity of the herbicide atrazine: effects on lipid peroxidation and activities of antioxidant enzymes in the freshwater fish Channa punctatus (Bloch). International journal of environmental research and public health, 7(8), 3298-3312. https://doi.org/10.3390/ijerph7083298

Oga, S., Camargo, M. M. A., and Batistuzzo, J.A. 2014. Fundamentos de Toxicologia. 4.ed. São Paulo: Atheneu Editora, 704p.

Peluso, I., Manafikhi, H., Reggi, R., Longhitano, Y., Zanza, C., and Palmery M. 2016. Relationship between the peroxidation of leukocytes index ratio and the improvement of postprandial metabolic stress by a functional food. Oxidative Medicine and Cellular Longevity. 2016:10. doi: 10.1155/2016/5630985.5630985

Petiz, L. L., Kunzler, A., Bortolin, R. C., Gasparotto, J., Matté, C., Moreira, J. C. F., and Gelain, D. P. 2017. Role of vitamin A oral supplementation on oxidative stress and inflammatory response in the liver of trained rats. Applied Physiology, Nutrition, and Metabolism, 42(11), 1192-1200. https://doi.org/10.1139/apnm-2017-0193

Picchi, M.G. 2010. Efeitos do ácido ascórbico em biomarcadores de estresse oxidativo em nadadores de alto rendimento de Ribeirão Preto/SP. (Unpublished doctoral dissertation). Universidade de São Paulo, Brasil.

Rathi, V., Rathi, J. C., Patel, K., Kanojia, S. S. S., and Tamizharasi, S. 2017. A comprehensive review of physalis angulata. World Journal of Pharmaceutical Research SJIF. Impact Factor 7.523 Volume 6, Issue 4, 1503-1512. Review Article ISSN 2277–7105.

Rocha, W. S., Lopes, R. M., Silva, D. D., Vieira, R. F., Silva, J. D., and Agostini-Costa, T. D. S. 2011. Compostos fenólicos totais e taninos condensados em frutas nativas do cerrado. Revista Brasileira de Fruticultura, 33(4), 1215-1221. DOI: http://dx.doi.org/10.1590/S0100-29452011000400021.

Roe, J. H. 1954. Chemical determination of ascorbic, dehydroascorbic, and diketogulonic acids. Methods of biochemical analysis, 1, 118-126. https://doi.org/10.1093/jnci/11.2.313

Stocks, J., and Dormandy, T. L. 1971. The autoxidation of human red cell lipids induced by hydrogen peroxide. British journal of haematology, 20(1), 95-111. DOI: https://doi.org/10.1111/j.1365-2141.1971.tb00790.x

Thapa, A., and Carroll, N. 2017. Dietary modulation of oxidative stress in Alzheimer’s disease. International journal of molecular sciences, 18(7), 1583. https://doi.org/10.3390/ijms18071583

Tureck, C., Locateli, G., Corrêa, V. G., and Koehnlein, E. A. 2017. Avaliação da ingestão de nutrientes antioxidantes pela população brasileira e sua relação com o estado nutricional. Revista Brasileira de Epidemiologia, 20, 30-42. https://doi.org/10.1590/1980-5497201700010003

Vaos, G., and Zavras, N. 2017. Antioxidants in experimental ischemia-reperfusion injury of the testis: Where are we heading towards? World journal of methodology, 7(2), 37. doi: 10.5662/wjm. v7.i2.37

Vargas, P. N., Hoelzel, S. C., and Rosa, C. D. 2008. Determinação do teor de polifenóis totais e atividade antioxidante em sucos de uva comerciais. Alimentos e Nutrição Araraquara, 19(1), 11-15. DOI: https://www.researchgate.net/publication/49599779

Zhou, L., Wen, J., Huang, Z., Nice, E. C., Huang, C., Zhang, H., and Li, Q. 2017. Redox proteomics screening cellular factors associated with oxidative stress in hepatocarcinogenesis. PROTEOMICS–Clinical Applications, 11(3-4), 1600089. https://doi.org/10.1002/prca.201600089

Copyright Disclaimer
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).

Downloads

Published

2019-08-01

How to Cite

Horn, R. C., GELATTI, G. T. ., KOEFENDER, J. ., GOLLE, D. P., MAYER, M. S. ., HERINGER, T. A. ., PASINI, M. B. ., TISSIANI, A. C. ., ARRUDA, A. C. ., RUBIN, L. ., RECKTENWALD, R. D. R., MOREIRA, P. R. ., & ALEGRANSI, C. . (2019). Antioxidant effect of Physalis angulata fruit on cells exposed to 2,4- dichlorophenoxyacetic acid. International Journal for Innovation Education and Research, 7(8), 374-386. https://doi.org/10.31686/ijier.vol7.iss8.1696

Most read articles by the same author(s)

1 2 > >>