Bacterial nanocellulose and long-chain fatty acids interaction
an in silico study
DOI:
https://doi.org/10.31686/ijier.vol10.iss12.4027Keywords:
bacterial cellulose, tucumã, Astrcaryum vulgare, ab initio, DFT, dockingAbstract
Chronic wounds are a big challenge in contemporary society, as they lead to a decrease in life-quality, amputations and even death. Infections and biofilm formation might occur with chronic wounds, due to the higher susceptibility to antibiotic multi-resistant bacteria. In this situation, novel wound dressing biomaterials are needed for treatment. Thus, the aim of this research was to evaluate a possible BNC interaction with tucumã oil/butter-derived fatty acids, as this system could be a promising biomaterial for wound treating. The interaction between cellobiose (BNC basic unit) and four fatty acids was evaluated by ab initio simulations and density functional theory (DFT), through SIESTA code. Molecular docking was also used to investigate the effect of a possible releasing of the studied fatty acids to the quorum-sensing proteins of Pseudomonas aeruginosa (gram-negative bacterium) and Staphylococcus aureus (gram-positive bacterium). According to ab initio simulations, the interaction between cellobiose and fatty acids derived from tucumã oil/butter was suggested due to physical adsorption (energy around 0.17-1.33 eV) of the lipidic structures into cellobiose. A great binding affinity (∆G ranging from 4.2-8.2 kcal.mol-1) was observed for both protonated and deprotonated fatty acids against P. aeruginosa (LasI, LasA and Rhlr) and S. aureus (ArgA and ArgC) quorum-sensing proteins, indicating that these bioactive compounds might act as potential antimicrobial and/or antibiofilm agents in the proposed system. Hence, from a theoretical viewpoint, the proposed system could be a promising raw biomaterial in the production of chronic wound dressings.
References
Abol-Fotouh, D., Hassan, M. A., Shokry, H., Roig, A., Azab, M. S., & Kashyout, A. E.-H. B. (2020). Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Scientific Reports, 10(1), 3491. https://doi.org/10.1038/s41598-020-60315-9 DOI: https://doi.org/10.1038/s41598-020-60315-9
An, S. qi, Murtagh, J., Twomey, K. B., Gupta, M. K., O’Sullivan, T. P., Ingram, R., … Tang, J. liang. (2019). Modulation of antibiotic sensitivity and biofilm formation in Pseudomonas aeruginosa by interspecies signal analogues. Nature Communications, 10(1), 2334. https://doi.org/10.1038/s41467-019-10271-4 DOI: https://doi.org/10.1038/s41467-019-10271-4
Arrigoni, M., & Madsen, G. K. H. (2019). Comparing the performance of LDA and GGA functionals in predicting the lattice thermal conductivity of III-V semiconductor materials in the zincblende structure: The cases of AlAs and BAs. Computational Materials Science, 156, 354–360. https://doi.org/10.1016/j.commatsci.2018.10.005 DOI: https://doi.org/10.1016/j.commatsci.2018.10.005
Aslanli, A., Lyagin, I., Stepanov, N., Presnov, D., & Efremenko, E. (2020). Bacterial Cellulose Containing Combinations of Antimicrobial Peptides with Various QQ Enzymes as a Prototype of an “Enhanced Antibacterial” Dressing: In Silico and In Vitro Data. Pharmaceutics, 12(12), 1155. https://doi.org/10.3390/pharmaceutics12121155 DOI: https://doi.org/10.3390/pharmaceutics12121155
Asokan, G., Ramadhan, T., Ahmed, E., & Sanad, H. (2019). WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain. Oman Medical Journal, 34(3), 184–193. https://doi.org/10.5001/omj.2019.37 DOI: https://doi.org/10.5001/omj.2019.37
Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Frontiers in Sustainable Food Systems, 3. DOI: https://doi.org/10.3389/fsufs.2019.00007
Bacakova, L., Zikmundova, M., Pajorova, J., Broz, A., Filova, E., Blanquer, A., … Sinica, A. (2020). Nanofibrous Scaffolds for Skin Tissue Engineering and Wound Healing Based on Synthetic Polymers. In Applications of Nanobiotechnology (pp. 1–30). London, UK: IntechOpen. DOI: https://doi.org/10.5772/intechopen.88744
Badhe, Y., Gupta, R., & Rai, B. (2019). Structural and barrier properties of the skin ceramide lipid bilayer: a molecular dynamics simulation study. Journal of Molecular Modeling, 25(5), 140. https://doi.org/10.1007/s00894-019-4008-5 DOI: https://doi.org/10.1007/s00894-019-4008-5
Baldissera, M. D., Souza, C. F., Doleski, P. H., Grando, T. H., Sagrillo, M. R., da Silva, A. S., … Monteiro, S. G. (2017). Treatment with tucumã oil (Astrocaryum vulgare) for diabetic mice prevents changes in seric enzymes of the purinergic system: Improvement of immune system. Biomedicine & Pharmacotherapy, 94, 374–379. https://doi.org/10.1016/j.biopha.2017.07.113 DOI: https://doi.org/10.1016/j.biopha.2017.07.113
Born, M., & Oppenheimer, R. (1927). Zur Quantentheorie der Molekeln. Annalen Der Physik, 389(20), 457–484. https://doi.org/10.1002/andp.19273892002 DOI: https://doi.org/10.1002/andp.19273892002
Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553–566. https://doi.org/10.1080/00268977000101561 DOI: https://doi.org/10.1080/00268977000101561
Bressa, N. R., Oviedo, V. R., Machado, A. M. B., Almeida, W. L. de, Volkmer, T. M., Santos, L. A. L. dos, … Rodrigues Junior, L. F. (2021). Incorporation of astrocaryum vulgare (tucuma) oil into PCL electrospun fibers. Polímeros, 31(3). https://doi.org/10.1590/0104-1428.20210056 DOI: https://doi.org/10.1590/0104-1428.20210056
Cai, J., Chen, X., Wang, X., Tan, Y., Ye, D., Jia, Y., … Yu, H. (2018). High-water-absorbing calcium alginate fibrous scaffold fabricated by microfluidic spinning for use in chronic wound dressings. RSC Advances, 8(69), 39463–39469. DOI: https://doi.org/10.1039/C8RA06922K
Cartron, M. L., England, S. R., Chiriac, A. I., Josten, M., Turner, R., Rauter, Y., … Foster, S. J. (2014). Bactericidal Activity of the Human Skin Fatty Acid cis -6-Hexadecanoic Acid on Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 58(7), 3599–3609. https://doi.org/10.1128/AAC.01043-13 DOI: https://doi.org/10.1128/AAC.01043-13
Casillas-Vargas, G., Ocasio-Malavé, C., Medina, S., Morales-Guzmán, C., Del Valle, R. G., Carballeira, N. M., & Sanabria-Ríos, D. J. (2021). Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Progress in Lipid Research, 82, 101093. https://doi.org/10.1016/j.plipres.2021.101093 DOI: https://doi.org/10.1016/j.plipres.2021.101093
Cavalcanti, L. M., Pinto, F. C. M., De Oliveira, G. M., Lima, S. V. C., de Andrade Aguiar, J. L., & Lins, E. M. (2017). Efficacy of bacterial cellulose membrane for the treatment of lower limbs chronic varicose ulcers: a randomized and controlled trial. Revista Do Colegio Brasileiro de Cirurgioes, 44(1), 72–80. https://doi.org/10.1590/0100-69912017001011 DOI: https://doi.org/10.1590/0100-69912017001011
Chakraborty, P., Daware, A. V., Kumari, M., Chatterjee, A., Bhattacharyya, D., Mitra, G., … Tribedi, P. (2018). Free tryptophan residues inhibit quorum sensing of Pseudomonas aeruginosa: a potential approach to inhibit the development of microbial biofilm. Archives of Microbiology, 200(10), 1419–1425. https://doi.org/10.1007/s00203-018-1557-4 DOI: https://doi.org/10.1007/s00203-018-1557-4
Chemmugil, P., Lakshmi, P. T. V., & Annamalai, A. (2019). Exploring Morin as an anti-quorum sensing agent (anti-QSA) against resistant strains of Staphylococcus aureus. Microbial Pathogenesis, 127, 304–315. https://doi.org/10.1016/J.MICPATH.2018.12.007 DOI: https://doi.org/10.1016/j.micpath.2018.12.007
Choi, S. M., & Shin, E. J. (2020). The Nanofication and Functionalization of Bacterial Cellulose and Its Applications. Nanomaterials, 10(3), 406. https://doi.org/10.3390/nano10030406 DOI: https://doi.org/10.3390/nano10030406
Cordenonsi, L. M., Santer, A., Sponchiado, R. M., Wingert, N. R., Raffin, R. P., & Schapoval, E. E. S. (2020). Amazonia Products in Novel Lipid Nanoparticles for Fucoxanthin Encapsulation. AAPS PharmSciTech, 21(1), 32. https://doi.org/10.1208/s12249-019-1601-y DOI: https://doi.org/10.1208/s12249-019-1601-y
Cortes, E., Márquez, E., Mora, J. R., Puello, E., Rangel, N., De Moya, A., & Trilleras, J. (2019). Theoretical Study of the Adsorption Process of Antimalarial Drugs into Acrylamide-Base Hydrogel Model Using DFT Methods: The First Approach to the Rational Design of a Controlled Drug Delivery System. Processes 2019, Vol. 7, Page 396, 7(7), 396. https://doi.org/10.3390/PR7070396 DOI: https://doi.org/10.3390/pr7070396
COSTA, B. E. T., SANTOS, O. V. dos, CORRÊA, N. C. F., & FRANÇA, L. F. de. (2016). Comparative study on the quality of oil extracted from two tucumã varieties using supercritical carbon dioxide. Food Science and Technology, 36(2), 322–328. https://doi.org/10.1590/1678-457X.0094 DOI: https://doi.org/10.1590/1678-457X.0094
Cresti, A., Lopez-Bezanilla, A., Ordejón, P., & Roche, S. (2011). Oxygen Surface Functionalization of Graphene Nanoribbons for Transport Gap Engineering. ACS Nano, 5(11), 9271–9277. https://doi.org/10.1021/nn203573y DOI: https://doi.org/10.1021/nn203573y
de Moraes, E. E., Tonel, M. Z., Fagan, S. B., & Barbosa, M. C. (2019). Density functional theory study of π-aromatic interaction of benzene, phenol, catechol, dopamine isolated dimers and adsorbed on graphene surface. Journal of Molecular Modeling, 25(10), 302. https://doi.org/10.1007/s00894-019-4185-2 DOI: https://doi.org/10.1007/s00894-019-4185-2
de Oliveira, P. V., Goulart, L., Dos Santos, C. L., Rossato, J., Fagan, S. B., Zanella, I., … González-Durruthy, M. (2020). Computational Modeling of Environmental Co-exposure on Oil-Derived Hydrocarbon Overload by Using Substrate-Specific Transport Protein (TodX) with Graphene Nanostructures. Current Topics in Medicinal Chemistry, 20(25), 2308–2325. https://doi.org/10.2174/1568026620666200820145412 DOI: https://doi.org/10.2174/1568026620666200820145412
De Salvi, D. T. B., da S. Barud, H., Treu-Filho, O., Pawlicka, A., Mattos, R. I., Raphael, E., & Ribeiro, S. J. L. (2014). Preparation, thermal characterization, and DFT study of the bacterial cellulose. Journal of Thermal Analysis and Calorimetry, 118(1), 205–215. https://doi.org/10.1007/s10973-014-3969-y DOI: https://doi.org/10.1007/s10973-014-3969-y
Deka, B. C., & Bhattacharyya, P. K. (2017). DFT study on host-guest interaction in chitosan–amino acid complexes. Computational and Theoretical Chemistry, 1110, 40–49. https://doi.org/10.1016/j.comptc.2017.03.036 DOI: https://doi.org/10.1016/j.comptc.2017.03.036
Dow, M., & Naughton, L. M. (2017). Amphiphilic Lipids, Signaling Molecules, and Quorum Sensing. In Cellular Ecophysiology of Microbe (pp. 1–19). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-20796-4_31-1 DOI: https://doi.org/10.1007/978-3-319-20796-4_31-1
El-Wakil, N. A., Hassan, E. A., Hassan, M. L., & El-Salam, S. S. A. (2019). Bacterial cellulose/phytochemical’s extracts biocomposites for potential active wound dressings. Environmental Science and Pollution Research, 26(26), 26529–26541. DOI: https://doi.org/10.1007/s11356-019-05776-w
Espinosa-Urgel, M. (2016). Fatty Acids as Mediators of Intercellular Signaling. In Cellular Ecophysiology of Microbe (pp. 1–13). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-20796-4_7-1 DOI: https://doi.org/10.1007/978-3-319-20796-4_7-1
Feinstein, W. P., & Brylinski, M. (2015). Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. Journal of Cheminformatics, 7(1), 18. https://doi.org/10.1186/s13321-015-0067-5 DOI: https://doi.org/10.1186/s13321-015-0067-5
Fernandes, C. P. (2015). Development of Nanoemulsions with Tucumã (Astrocaryum vulgare) Fruits Oil. Journal of Nanomedicine Research, 2(2), 1–4. https://doi.org/10.15406/jnmr.2015.02.00024 DOI: https://doi.org/10.15406/jnmr.2015.02.00024
Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols 2016 11:5, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051 DOI: https://doi.org/10.1038/nprot.2016.051
Frykberg, R. G., & Banks, J. (2015). Challenges in the Treatment of Chronic Wounds. Advances in Wound Care, 4(9), 560–582. https://doi.org/10.1089/wound.2015.0635 DOI: https://doi.org/10.1089/wound.2015.0635
Gethin, G. (2007). The significance of surface pH in chronic wounds. Wounds, 3(3), 52–56.
Gnanendra, S., Anusuya, S., & Natarajan, J. (2012). Molecular modeling and active site analysis of SdiA homolog, a putative quorum sensor for Salmonella typhimurium pathogenecity reveals specific binding patterns of AHL transcriptional regulators. Journal of Molecular Modeling, 18(10), 4709–4719. https://doi.org/10.1007/s00894-012-1469-1 DOI: https://doi.org/10.1007/s00894-012-1469-1
Gorgieva, S. (2020). Bacterial Cellulose as a Versatile Platform for Research and Development of Biomedical Materials. Processes, 8(5), 1–26. DOI: https://doi.org/10.3390/pr8050624
Gould, A., Schweizer, H. P., Churchill, M. E. A., Gould, T. A., Schweizer, H. P., & Churchill, M. E. A. (2004). Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Molecular Microbiology, 53(4), 1135–1146. https://doi.org/10.1111/J.1365-2958.2004.04211.X DOI: https://doi.org/10.1111/j.1365-2958.2004.04211.x
Gould, L., Abadir, P., Brem, H., Carter, M., Conner-Kerr, T., Davidson, J., … Schmader, K. (2015). Chronic Wound Repair and Healing in Older Adults: Current Status and Future Research. Journal of the American Geriatrics Society, 63(3), 427. https://doi.org/10.1111/JGS.13332 DOI: https://doi.org/10.1111/jgs.13332
Hema, K., Ahamad, S., Joon, H. K., Pandey, R., & Gupta, D. (2021). Atomic resolution homology models and molecular dynamics simulations of plasmodium falciparum tubulins. ACS Omega, 6(27), 17510–17522. https://doi.org/10.1021/ACSOMEGA.1C01988/SUPPL_FILE/AO1C01988_SI_001.PDF DOI: https://doi.org/10.1021/acsomega.1c01988
Hernández Rosas, J. J., Ramírez Gutiérrez, R. E., Escobedo-Morales, A., & Chigo Anota, E. (2011). First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide. Journal of Molecular Modeling, 17(5), 1133–1139. https://doi.org/10.1007/s00894-010-0818-1 DOI: https://doi.org/10.1007/s00894-010-0818-1
Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864–B871. https://doi.org/10.1103/PhysRev.136.B864 DOI: https://doi.org/10.1103/PhysRev.136.B864
Homaeigohar, S., & Boccaccini, A. R. (2020). Antibacterial biohybrid nanofibers for wound dressings. Acta Biomaterialia, 107, 25–49. DOI: https://doi.org/10.1016/j.actbio.2020.02.022
Huang, J., Shi, Y., Zeng, G., Gu, Y., Chen, G., Shi, L., … Zhou, J. (2016). Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. Chemosphere, 157, 137–151. https://doi.org/10.1016/j.chemosphere.2016.05.032 DOI: https://doi.org/10.1016/j.chemosphere.2016.05.032
Ituen, E. B., Essien, E. A., Udo, U. E., & Oluwaseyi, O. R. (2014). Experimental and theoretical study of corrosion inhibition effect of Cucumeropsis mannii N. seed oil metallic soap of zinc on mild steel surface in sulphuric acid. Advances in Applied Science Researcha, 5(3), 1–28.
Jauris, I. M., Matos, C. F., Saucier, C., Lima, E. C., Zarbin, A. J. G., Fagan, S. B., … Zanella, I. (2016). Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 18(3), 1526–1536. https://doi.org/10.1039/C5CP05940B DOI: https://doi.org/10.1039/C5CP05940B
Jauris, Iuri M., Fagan, S. B., Adebayo, M. A., & Machado, F. M. (2016). Adsorption of acridine orange and methylene blue synthetic dyes and anthracene on single wall carbon nanotubes: A first principle approach. Computational and Theoretical Chemistry, 1076, 42–50. https://doi.org/10.1016/j.comptc.2015.11.021 DOI: https://doi.org/10.1016/j.comptc.2015.11.021
Jean-Quartier, C., Jeanquartier, F., Jurisica, I., & Holzinger, A. (2018). In silico cancer research towards 3R. BMC Cancer, 18(1). https://doi.org/10.1186/S12885-018-4302-0 DOI: https://doi.org/10.1186/s12885-018-4302-0
Jones, E. M., Cochrane, C. A., & Percival, S. L. (2015). The Effect of pH on the Extracellular Matrix and Biofilms. Advances in Wound Care, 4(7), 431–439. https://doi.org/10.1089/wound.2014.0538 DOI: https://doi.org/10.1089/wound.2014.0538
Jozala, A. F., de Lencastre-Novaes, L. C., Lopes, A. M., de Carvalho Santos-Ebinuma, V., Mazzola, P. G., Pessoa-Jr, A., … Chaud, M. V. (2016). Bacterial nanocellulose production and application: a 10-year overview. Applied Microbiology and Biotechnology, 100(5), 2063–2072. https://doi.org/10.1007/s00253-015-7243-4 DOI: https://doi.org/10.1007/s00253-015-7243-4
Kanikireddy, V., Varaprasad, K., Jayaramudu, T., Karthikeyan, C., & Sadiku, R. (2020). Carboxymethyl cellulose-based materials for infection control and wound healing: A review. International Journal of Biological Macromolecules, 164, 963–975. DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.160
Kapil, J., Shukla, P., & Pathak, A. (2020). Review Article on Density Functional Theory. In Springer Proceedings in Physics (Vol. 256, pp. 211–220). Springer, Singapore. https://doi.org/10.1007/978-981-15-8625-5_22 DOI: https://doi.org/10.1007/978-981-15-8625-5_22
Kecili, R., & Hussain, C. M. (2018). Mechanism of Adsorption on Nanomaterials. In Nanomaterials in Chromatography (pp. 89–115). Elsevier. https://doi.org/10.1016/B978-0-12-812792-6.00004-2 DOI: https://doi.org/10.1016/B978-0-12-812792-6.00004-2
Kohn, W., & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A), A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133 DOI: https://doi.org/10.1103/PhysRev.140.A1133
Kondo, T., Rytczak, P., & Bielecki, S. (2016). Bacterial NanoCellulose Characterization. Bacterial Nanocellulose: From Biotechnology to Bio-Economy, 59–71. https://doi.org/10.1016/B978-0-444-63458-0.00004-4 DOI: https://doi.org/10.1016/B978-0-444-63458-0.00004-4
Kumar, P., Lee, J.-H., Beyenal, H., & Lee, J. (2020). Fatty Acids as Antibiofilm and Antivirulence Agents. Trends in Microbiology, 28(9), 753–768. DOI: https://doi.org/10.1016/j.tim.2020.03.014
Kwiatkowski, P., Pruss, A., Masiuk, H., Mnichowska-Polanowska, M., Kaczmarek, M., Giedrys-Kalemba, S., … Sienkiewicz, M. (2019). The effect of fennel essential oil and trans-anethole on antibacterial activity of mupirocin against Staphylococcus aureus isolated from asymptomatic carriers. Postepy Dermatologii i Alergologii, 36(3), 308–314. https://doi.org/10.5114/ada.2018.76425 DOI: https://doi.org/10.5114/ada.2018.76425
Lalouckova, K., Skrivanova, E., Rondevaldova, J., Frankova, A., Soukup, J., & Kokoska, L. (2021). In vitro antagonistic inhibitory effects of palm seed crude oils and their main constituent, lauric acid, with oxacillin in Staphylococcus aureus. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-020-80481-0 DOI: https://doi.org/10.1038/s41598-020-80481-0
Leonard, P. G., Bezar, I. F., Sidote, D. J., & Stock, A. M. (2012). Identification of a hydrophobic cleft in the LytTR domain of AgrA as a locus for small molecule interactions that inhibit DNA binding. Biochemistry, 51(50), 10035–10043. https://doi.org/10.1021/BI3011785/ASSET/IMAGES/MEDIUM/BI-2012-011785_0006.GIF DOI: https://doi.org/10.1021/bi3011785
Leonardi, B., Arauz, L. J. De, & Baruque-Ramos, J. (2019). Chemical characterization of Amazonian non-polar vegetal extracts (buriti, tucumã, Brazil nut, cupuaçu, and cocoa) by infrared spectroscopy (FTIR) and gas chromatography (GC-FID). Infarma - Ciências Farmacêuticas, 31(3), 163–176. DOI: https://doi.org/10.14450/2318-9312.v31.e3.a2019.pp163-176
Li, B., Ou, P., Wei, Y., Zhang, X., & Song, J. (2018). Polycyclic Aromatic Hydrocarbons Adsorption onto Graphene: A DFT and AIMD Study. Materials, 11(5), 726. https://doi.org/10.3390/ma11050726 DOI: https://doi.org/10.3390/ma11050726
Li, Y., Lin, M., & Davenport, J. W. (2011). Ab Initio Studies of Cellulose I: Crystal Structure, Intermolecular Forces, and Interactions with Water. The Journal of Physical Chemistry C, 115(23), 11533–11539. https://doi.org/10.1021/jp2006759 DOI: https://doi.org/10.1021/jp2006759
Lim, G.-H., Singhal, R., Kachroo, A., & Kachroo, P. (2017). Fatty Acid– and Lipid-Mediated Signaling in Plant Defense. Annual Review of Phytopathology, 55(1), 505–536. https://doi.org/10.1146/annurev-phyto-080516-035406 DOI: https://doi.org/10.1146/annurev-phyto-080516-035406
Lopreiato, M., Di Cristofano, S., Cocchiola, R., Mariano, A., Guerrizio, L., Scandurra, R., … Scotto d’Abusco, A. (2021). Biochemical and Computational Studies of the Interaction between a Glucosamine Derivative, NAPA, and the IKKα Kinase. International Journal of Molecular Sciences, 22(4), 1643. https://doi.org/10.3390/ijms22041643 DOI: https://doi.org/10.3390/ijms22041643
Machado, F. M., Carmalin, S. A., Lima, E. C., Dias, S. L. P., Prola, L. D. T., Saucier, C., … Fagan, S. B. (2016). Adsorption of Alizarin Red S Dye by Carbon Nanotubes: An Experimental and Theoretical Investigation. The Journal of Physical Chemistry C, 120(32), 18296–18306. https://doi.org/10.1021/acs.jpcc.6b03884 DOI: https://doi.org/10.1021/acs.jpcc.6b03884
Miar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A. R., & Hatamjafari, F. (2021). Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[ d ]thiazole-2(3 H )-imine and its para -substituted der. Journal of Chemical Research, 45(1–2), 147–158. https://doi.org/10.1177/1747519820932091 DOI: https://doi.org/10.1177/1747519820932091
Moghadam, M. T., Khoshbayan, A., Chegini, Z., Farahani, I., & Shariati, A. (2020). Bacteriophages, a New Therapeutic Solution for Inhibiting Multidrug-Resistant Bacteria Causing Wound Infection: Lesson from Animal Models and Clinical Trials. Drug Design, Development and Therapy, Volume 14, 1867–1883. DOI: https://doi.org/10.2147/DDDT.S251171
Mohammed, N. J., Othman, N. K., Taib, M. F. M., Samat, M. H., & Yahya, S. (2021). Experimental and Theoretical Studies on Extract of Date Palm Seed as a Green Anti-Corrosion Agent in Hydrochloric Acid Solution. Molecules, 26(12), 1–18. https://doi.org/10.3390/molecules26123535 DOI: https://doi.org/10.3390/molecules26123535
Nethi, S. K., Das, S., Patra, C. R., & Mukherjee, S. (2019). Recent advances in inorganic nanomaterials for wound-healing applications. Biomaterials Science, 7(7), 2652–2674. DOI: https://doi.org/10.1039/C9BM00423H
Nogueira, J. R., Verza, F. A., Nishimura, F., Das, U., Caruso, Í. P., Fachin, A. L., Marins, M. (2021). Molecular Docking Studies of Curcumin Analogues against SARS-CoV-2 Spike Protein. Journal of the Brazilian Chemical Society, 32(10), 1943–1955. https://doi.org/10.21577/0103-5053.20210085 DOI: https://doi.org/10.21577/0103-5053.20210085
Norrrahim, M. N. F., Nurazzi, N. M., Jenol, M. A., Farid, M. A. A., Janudin, N., Ujang, F. A., … Ilyas, R. A. (2021). Emerging development of nanocellulose as an antimicrobial material: an overview. Materials Advances, 2(11), 3538–3551. https://doi.org/10.1039/D1MA00116G DOI: https://doi.org/10.1039/D1MA00116G
Olsson, M., Järbrink, K., Divakar, U., Bajpai, R., Upton, Z., Schmidtchen, A., & Car, J. (2019). The humanistic and economic burden of chronic wounds: A systematic review. Wound Repair and Regeneration, 27(1), 114–125. https://doi.org/10.1111/wrr.12683 DOI: https://doi.org/10.1111/wrr.12683
Oviedo, V. R., Balbé, F. P., Rodrigues Jr., L. F., Sagrillo, M. R., Fagan, S. B., & Fernandes, L. da S. (2021). Bacterial nanocellulose membranes as potential chronic wound dressing: influence of alternative culture media on nanofiber diameter - a brief review. Disciplinarum Scientia - Ciências Naturais e Tecnológicas, 22(3), 31–44. https://doi.org/10.37779/nt.v22i3.4091 DOI: https://doi.org/10.37779/nt.v22i3.4091
Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., Cai, Y. (2020). Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal, 122, 1–30. DOI: https://doi.org/10.1016/j.eurpolymj.2019.109365
Papenfort, K., & Bassler, B. L. (2016). Quorum sensing signal–response systems in Gram-negative bacteria. Nature Reviews Microbiology, 14(9), 576–588. https://doi.org/10.1038/nrmicro.2016.89 DOI: https://doi.org/10.1038/nrmicro.2016.89
Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23(10), 5048. https://doi.org/10.1103/PhysRevB.23.5048 DOI: https://doi.org/10.1103/PhysRevB.23.5048
Pereira dos Santos, E., Nicácio, P. H. M., Coêlho Barbosa, F., Nunes da Silva, H., Andrade, A. L. S., Lia Fook, M. V., Farias Leite, I. (2019). Chitosan/Essential Oils Formulations for Potential Use as Wound Dressing: Physical and Antimicrobial Properties. Materials, 12(14), 1–21. https://doi.org/10.3390/ma12142223 DOI: https://doi.org/10.3390/ma12142223
Pontoh, R., Rarisavitri, V. E., Yang, C. C., Putra, M. F., & Anugrah, D. S. B. (2022). Density Functional Theory Study of Intermolecular Interactions between Amylum and Cellulose. Indonesian Journal of Chemistry, 22(1), 253. https://doi.org/10.22146/ijc.69241 DOI: https://doi.org/10.22146/ijc.69241
Portela, R., Leal, C. R., Almeida, P. L., & Sobral, R. G. (2019). Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microbial Biotechnology, 12(4), 586–610. DOI: https://doi.org/10.1111/1751-7915.13392
Rahmawati, S., Radiman, C. L., & Martoprawiro, M. A. (2018). Density Functional Theory (DFT) and Natural Bond Orbital (NBO) Analysis of Intermolecular Hydrogen Bond Interaction in “Phosphorylated Nata De Coco - Water.” Indonesian Journal of Chemistry, 18(1), 173. https://doi.org/10.22146/ijc.25170 DOI: https://doi.org/10.22146/ijc.25170
Ramos, P., Schmitz, M., Gama, S., Portantiolo, A., Durruthy, M. G., de Souza Votto, A. P., … Monserrat, J. M. (2018). Cytoprotection of lipoic acid against toxicity induced by saxitoxin in hippocampal cell line HT-22 through in silico modeling and in vitro assays. Toxicology, 393, 171–184. https://doi.org/10.1016/j.tox.2017.11.004 DOI: https://doi.org/10.1016/j.tox.2017.11.004
Rehman, Z. U., & Leiknes, T. O. (2018). Quorum-quenching bacteria isolated from red sea sediments reduce biofilm formation by Pseudomonas aeruginosa. Frontiers in Microbiology, 9(1354), 1–13. https://doi.org/10.3389/FMICB.2018.01354/BIBTEX DOI: https://doi.org/10.3389/fmicb.2018.01354
Rossato, A., Silveira, L. da S., Oliveira, P. S., Filho, W. P. de S., Wagner, R., Klein, B., … Sagrillo, M. R. (2020). Evaluation of anti-inflammatory and healing activity of a nano-structured lipid carrier containing tucuman butter oil and butter. Disciplinarum Scientia - Ciências Naturais e Tecnológicas, 21(3), 99–108. https://doi.org/10.37779/nt.v21i3.3551 DOI: https://doi.org/10.37779/nt.v21i3.3551
Rossato, A., Silveira, L. da S., Oliveira, P. S., Souza, T. T. de, Becker, A. P., Wagner, R., … Sagrillo, M. R. (2021). Safety profile, antimicrobial and antibiofilm activities of a nanostructured lipid carrier containing oil and butter from Astrocaryum vulgare: in vitro studies. International Journal for Innovation Education and Research, 9(5), 478–497. https://doi.org/10.31686/ijier.vol9.iss5.3113 DOI: https://doi.org/10.31686/ijier.vol9.iss5.3113
Ruiz-Morales, Y. (2002). HOMO−LUMO Gap as an Index of Molecular Size and Structure for Polycyclic Aromatic Hydrocarbons (PAHs) and Asphaltenes: A Theoretical Study. I. Journal of Physical Chemistry A, 106(46), 11283–11308. https://doi.org/10.1021/JP021152E DOI: https://doi.org/10.1021/jp021152e
SALIHU, R., FOONG, C. Y. E. E., RAZAK, S. I. A. B. D., KADIR, M. R. A., YUSOF, A. H. M., & NAYAN, G. H. M. A. T. (2019). Overview of inexpensive production routes of bacterial cellulose and its applications in biomedical engineering. Cellulose Chemistry and Technology, 53(1–2), 1–13. DOI: https://doi.org/10.35812/CelluloseChemTechnol.2019.53.01
Santos, J. G. S., Macedo-Filho, A., Silva, A. M., de Sousa, F. F., Caetano, E. W. S., da Silva, M. B., & Freire, V. N. (2021). Computational structural, electronic and optical properties of the palmitic acid in its C form. Journal of Molecular Modeling, 27(5), 145. https://doi.org/10.1007/s00894-021-04752-x DOI: https://doi.org/10.1007/s00894-021-04752-x
Schopf, P. F., Zanella, I., Cordeiro, M. N. D. S., Ruso, J. M., González-Durruthy, M., & Martins, M. O. (2021). Nanomarker for Early Detection of Alzheimer’s Disease Combining Ab initio DFT Simulations and Molecular Docking Approach. Biophysica 2021, Vol. 1, Pages 76-86, 1(2), 76–86. https://doi.org/10.3390/BIOPHYSICA1020007 DOI: https://doi.org/10.3390/biophysica1020007
Schweiker, S. S., & Levonis, S. M. (2020). Navigating the intricacies of molecular docking. Future Medicinal Chemistry, 12(6), 469–471. https://doi.org/10.4155/fmc-2019-0355 DOI: https://doi.org/10.4155/fmc-2019-0355
Sekar, P. C., Paul, D. M., Srinivasan, E., & Rajasekaran, R. (2021). Unravelling the molecular effect of ocellatin-1, F1, K1 and S1, the frog-skin antimicrobial peptides to enhance its therapeutics—quantum and molecular mechanical approaches. Journal of Molecular Modeling, 27(1), 10. https://doi.org/10.1007/s00894-020-04652-6 DOI: https://doi.org/10.1007/s00894-020-04652-6
Shahi, S. K., Singh, V. K., Kumar, A., Gupta, S. K., & Singh, S. K. (2013). Interaction of dihydrofolate reductase and aminoglycoside adenyltransferase enzyme from Klebsiella pneumoniae multidrug resistant strain DF12SA with clindamycin: a molecular modelling and docking study. Journal of Molecular Modeling, 19(3), 973–983. https://doi.org/10.1007/s00894-012-1635-5 DOI: https://doi.org/10.1007/s00894-012-1635-5
Shoemark, D. K., Colenso, C. K., Toelzer, C., Gupta, K., Sessions, R. B., Davidson, A. D., Mulholland, A. J. (2021). Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARS‐CoV‐2 Spike Protein. Angewandte Chemie International Edition, 60(13), 7098–7110. https://doi.org/10.1002/anie.202015639 DOI: https://doi.org/10.1002/anie.202015639
Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order- N materials simulation. Journal of Physics: Condensed Matter, 14(11), 2745–2779. https://doi.org/10.1088/0953-8984/14/11/302 DOI: https://doi.org/10.1088/0953-8984/14/11/302
Stumpf, T. R., Yang, X., Zhang, J., & Cao, X. (2018). In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Materials Science and Engineering: C, 82, 372–383. DOI: https://doi.org/10.1016/j.msec.2016.11.121
Subramani, R., & Jayaprakashvel, M. (2019). Bacterial Quorum Sensing: Biofilm Formation, Survival Behaviour and Antibiotic Resistance. In Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry (pp. 21–37). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-32-9409-7_3 DOI: https://doi.org/10.1007/978-981-32-9409-7_3
Teixeira, M. A., Paiva, M. C., Amorim, M. T. P., & Felgueiras, H. P. (2020). Electrospun Nanocomposites Containing Cellulose and Its Derivatives Modified with Specialized Biomolecules for an Enhanced Wound Healing. Nanomaterials, 10(3), 557. https://doi.org/10.3390/nano10030557 DOI: https://doi.org/10.3390/nano10030557
Tonel, M. Z., González-Durruthy, M., Zanella, I., & Fagan, S. B. (2019). Interactions of graphene derivatives with glutamate-neurotransmitter: A parallel first principles - Docking investigation. Journal of Molecular Graphics and Modelling, 88, 121–127. https://doi.org/10.1016/j.jmgm.2019.01.007 DOI: https://doi.org/10.1016/j.jmgm.2019.01.007
Tournus, F., & Charlier, J.-C. (2005). Ab initio study of benzene adsorption on carbon nanotubes. Physical Review B, 71(16), 165421. https://doi.org/10.1103/PhysRevB.71.165421 DOI: https://doi.org/10.1103/PhysRevB.71.165421
Tournus, F., Latil, S., Heggie, M. I., & Charlier, J.-C. (2005). π-stacking interaction between carbon nanotubes and organic molecules. Physical Review B, 72(7), 075431. https://doi.org/10.1103/PhysRevB.72.075431 DOI: https://doi.org/10.1103/PhysRevB.72.075431
Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), NA-NA. https://doi.org/10.1002/jcc.21334 DOI: https://doi.org/10.1002/jcc.21334
Varier, K. M., Gudeppu, M., Chinnasamy, A., Thangarajan, S., Balasubramanian, J., Li, Y., & Gajendran, B. (2019). Nanoparticles: Antimicrobial Applications and Its Prospects. Advanced Nanostructured Materials for Environmental Remediation, 25, 321. https://doi.org/10.1007/978-3-030-04477-0_12 DOI: https://doi.org/10.1007/978-3-030-04477-0_12
Vilela, C., Freire, C. S. R., Araújo, C., Rudić, S., Silvestre, A. J. D., Vaz, P. D., Nolasco, M. M. (2020). Understanding the Structure and Dynamics of Nanocellulose-Based Composites with Neutral and Ionic Poly(methacrylate) Derivatives Using Inelastic Neutron Scattering and DFT Calculations. Molecules, 25(7), 1–16. https://doi.org/10.3390/molecules25071689 DOI: https://doi.org/10.3390/molecules25071689
Wang, K., Wang, F., Lou, Z., Han, Q., Zhao, Q., Hu, K., … Li, J. (2020). Relationship between the Electrical Characteristics of Molecules and Fast Streamers in Ester Insulation Oil. International Journal of Molecular Sciences 2020, Vol. 21, Page 974, 21(3), 1–13. https://doi.org/10.3390/IJMS21030974 DOI: https://doi.org/10.3390/ijms21030974
Wang, Y., Lu, Y., Zhang, J., Hu, X., Yang, Z., Guo, Y., & Wang, Y. (2019). A synergistic antibacterial effect between terbium ions and reduced graphene oxide in a poly(vinyl alcohol)-alginate hydrogel for treating infected chronic wounds. Journal of Materials Chemistry B, 7(4), 538–547. DOI: https://doi.org/10.1039/C8TB02679C
Xiao, Y., Ahadian, S., & Radisic, M. (2017). Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment. Tissue Engineering Part B: Reviews, 23(1), 9–26. DOI: https://doi.org/10.1089/ten.teb.2016.0200
Zarei, S., Niad, M., & Raanaei, H. (2018). The removal of mercury ion pollution by using Fe3O4-nanocellulose: Synthesis, characterizations and DFT studies. Journal of Hazardous Materials, 344, 258–273. https://doi.org/10.1016/j.jhazmat.2017.10.009 DOI: https://doi.org/10.1016/j.jhazmat.2017.10.009
Zhang, G., & Musgrave, C. B. (2007). Comparison of DFT methods for molecular orbital eigenvalue calculations. Journal of Physical Chemistry A, 111(8), 1554–1561. https://doi.org/10.1021/ DOI: https://doi.org/10.1021/jp061633o
Zhang, X., Shu, W., Yu, Q., Qu, W., Wang, Y., & Li, R. (2020). Functional Biomaterials for Treatment of Chronic Wound. Frontiers in Bioengineering and Biotechnology, 8, 516. DOI: https://doi.org/10.3389/fbioe.2020.00516
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Vinícius Rodrigues Oviedo, Mariana Zancan Tonel, Walter Paixão de Souza Filho, Luiz Fernando Rodrigues Jr., Michelle Rorato Sagrillo, Solange Binotto Fagan, Liana da Silva Fernandes

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2022-11-18
Published 2022-12-01
Most read articles by the same author(s)
- Larissa da Silva Silveira, Aline Rossato, Pâmella Scharamm Oliveira, Elisandra da Silva Pena da Fonseca, Luísa Donato Bortoluzzi, Wanessa de Carvalho Vieira, Guilherme Chagas Kurtz, Walter Paixão de Souza Filho, Diego de Souza, Liana da Silva Fernandes, Michele Sagrillo, Analysis of antimicrobial, antibiofilm, and healing activity of lipid nanocarriers based on Tucuman butter (Astrocaryum vulgare), fixed oils from microalgae chlorella Homosphaera and from UVA seed Vitis vinifera , International Journal for Innovation Education and Research: Vol. 10 No. 2 (2022): International Journal for Innovation Education and Research
- Walter Paixão De Sousa Filho, Mariana Zancan Tonel, Vínicius Rodrigues Oviedo, Liana da Silva Fernandes, Diego de Souza, Michele Rorato Sagrillo, Biogenic Synthesis and antibiofilm efficacy of iron nanoparticles via computer simulation , International Journal for Innovation Education and Research: Vol. 10 No. 8 (2022): International Journal for Innovation Education and Research