Bacterial nanocellulose and long-chain fatty acids interaction

an in silico study

Authors

DOI:

https://doi.org/10.31686/ijier.vol10.iss12.4027

Keywords:

bacterial cellulose, tucumã, Astrcaryum vulgare, ab initio, DFT, docking

Abstract

Chronic wounds are a big challenge in contemporary society, as they lead to a decrease in life-quality, amputations and even death. Infections and biofilm formation might occur with chronic wounds, due to the higher susceptibility to antibiotic multi-resistant bacteria. In this situation, novel wound dressing biomaterials are needed for treatment. Thus, the aim of this research was to evaluate a possible BNC interaction with tucumã oil/butter-derived fatty acids, as this system could be a promising biomaterial for wound treating. The interaction between  cellobiose (BNC basic unit) and four fatty acids was evaluated by ab initio simulations and density functional theory (DFT), through SIESTA code. Molecular docking was also used to investigate the effect of a possible releasing of the studied fatty acids to the quorum-sensing proteins of Pseudomonas aeruginosa (gram-negative bacterium) and Staphylococcus aureus (gram-positive bacterium). According to ab initio simulations, the interaction between cellobiose and fatty acids derived from tucumã oil/butter was suggested due to physical adsorption (energy around 0.17-1.33 eV) of the lipidic structures into cellobiose. A great binding affinity (∆G ranging from 4.2-8.2 kcal.mol-1) was observed for both protonated and deprotonated fatty acids against P. aeruginosa (LasI, LasA and Rhlr) and S. aureus (ArgA and ArgC) quorum-sensing proteins, indicating that these bioactive compounds might act as potential antimicrobial and/or antibiofilm agents in the proposed system. Hence, from a theoretical viewpoint, the proposed system could be a promising raw biomaterial in the production of chronic wound dressings.

Downloads

Download data is not yet available.

Author Biographies

  • Vinícius Rodrigues Oviedo, Franciscan University (UFN)

    Nanosciences Post-Graduation Program.

  • Mariana Zancan Tonel, Franciscan University

    Nanosciences Post-Graduation Program

  • Walter Paixão de Souza Filho, Franciscan University

    Nanosciences Post-Graduation Program

  • Luiz Fernando Rodrigues Jr., Franciscan University

    Biomedical Engineering Department

  • Michelle Rorato Sagrillo, Franciscan University

    Nanosciences Post-Graduation Program

  • Solange Binotto Fagan, Franciscan University

    Nanosciences Post-Graduation Program

  • Liana da Silva Fernandes, Franciscan University

    Nanosciences Post-Graduation Program

References

Abol-Fotouh, D., Hassan, M. A., Shokry, H., Roig, A., Azab, M. S., & Kashyout, A. E.-H. B. (2020). Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Scientific Reports, 10(1), 3491. https://doi.org/10.1038/s41598-020-60315-9 DOI: https://doi.org/10.1038/s41598-020-60315-9

An, S. qi, Murtagh, J., Twomey, K. B., Gupta, M. K., O’Sullivan, T. P., Ingram, R., … Tang, J. liang. (2019). Modulation of antibiotic sensitivity and biofilm formation in Pseudomonas aeruginosa by interspecies signal analogues. Nature Communications, 10(1), 2334. https://doi.org/10.1038/s41467-019-10271-4 DOI: https://doi.org/10.1038/s41467-019-10271-4

Arrigoni, M., & Madsen, G. K. H. (2019). Comparing the performance of LDA and GGA functionals in predicting the lattice thermal conductivity of III-V semiconductor materials in the zincblende structure: The cases of AlAs and BAs. Computational Materials Science, 156, 354–360. https://doi.org/10.1016/j.commatsci.2018.10.005 DOI: https://doi.org/10.1016/j.commatsci.2018.10.005

Aslanli, A., Lyagin, I., Stepanov, N., Presnov, D., & Efremenko, E. (2020). Bacterial Cellulose Containing Combinations of Antimicrobial Peptides with Various QQ Enzymes as a Prototype of an “Enhanced Antibacterial” Dressing: In Silico and In Vitro Data. Pharmaceutics, 12(12), 1155. https://doi.org/10.3390/pharmaceutics12121155 DOI: https://doi.org/10.3390/pharmaceutics12121155

Asokan, G., Ramadhan, T., Ahmed, E., & Sanad, H. (2019). WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain. Oman Medical Journal, 34(3), 184–193. https://doi.org/10.5001/omj.2019.37 DOI: https://doi.org/10.5001/omj.2019.37

Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Frontiers in Sustainable Food Systems, 3. DOI: https://doi.org/10.3389/fsufs.2019.00007

Bacakova, L., Zikmundova, M., Pajorova, J., Broz, A., Filova, E., Blanquer, A., … Sinica, A. (2020). Nanofibrous Scaffolds for Skin Tissue Engineering and Wound Healing Based on Synthetic Polymers. In Applications of Nanobiotechnology (pp. 1–30). London, UK: IntechOpen. DOI: https://doi.org/10.5772/intechopen.88744

Badhe, Y., Gupta, R., & Rai, B. (2019). Structural and barrier properties of the skin ceramide lipid bilayer: a molecular dynamics simulation study. Journal of Molecular Modeling, 25(5), 140. https://doi.org/10.1007/s00894-019-4008-5 DOI: https://doi.org/10.1007/s00894-019-4008-5

Baldissera, M. D., Souza, C. F., Doleski, P. H., Grando, T. H., Sagrillo, M. R., da Silva, A. S., … Monteiro, S. G. (2017). Treatment with tucumã oil (Astrocaryum vulgare) for diabetic mice prevents changes in seric enzymes of the purinergic system: Improvement of immune system. Biomedicine & Pharmacotherapy, 94, 374–379. https://doi.org/10.1016/j.biopha.2017.07.113 DOI: https://doi.org/10.1016/j.biopha.2017.07.113

Born, M., & Oppenheimer, R. (1927). Zur Quantentheorie der Molekeln. Annalen Der Physik, 389(20), 457–484. https://doi.org/10.1002/andp.19273892002 DOI: https://doi.org/10.1002/andp.19273892002

Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553–566. https://doi.org/10.1080/00268977000101561 DOI: https://doi.org/10.1080/00268977000101561

Bressa, N. R., Oviedo, V. R., Machado, A. M. B., Almeida, W. L. de, Volkmer, T. M., Santos, L. A. L. dos, … Rodrigues Junior, L. F. (2021). Incorporation of astrocaryum vulgare (tucuma) oil into PCL electrospun fibers. Polímeros, 31(3). https://doi.org/10.1590/0104-1428.20210056 DOI: https://doi.org/10.1590/0104-1428.20210056

Cai, J., Chen, X., Wang, X., Tan, Y., Ye, D., Jia, Y., … Yu, H. (2018). High-water-absorbing calcium alginate fibrous scaffold fabricated by microfluidic spinning for use in chronic wound dressings. RSC Advances, 8(69), 39463–39469. DOI: https://doi.org/10.1039/C8RA06922K

Cartron, M. L., England, S. R., Chiriac, A. I., Josten, M., Turner, R., Rauter, Y., … Foster, S. J. (2014). Bactericidal Activity of the Human Skin Fatty Acid cis -6-Hexadecanoic Acid on Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 58(7), 3599–3609. https://doi.org/10.1128/AAC.01043-13 DOI: https://doi.org/10.1128/AAC.01043-13

Casillas-Vargas, G., Ocasio-Malavé, C., Medina, S., Morales-Guzmán, C., Del Valle, R. G., Carballeira, N. M., & Sanabria-Ríos, D. J. (2021). Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Progress in Lipid Research, 82, 101093. https://doi.org/10.1016/j.plipres.2021.101093 DOI: https://doi.org/10.1016/j.plipres.2021.101093

Cavalcanti, L. M., Pinto, F. C. M., De Oliveira, G. M., Lima, S. V. C., de Andrade Aguiar, J. L., & Lins, E. M. (2017). Efficacy of bacterial cellulose membrane for the treatment of lower limbs chronic varicose ulcers: a randomized and controlled trial. Revista Do Colegio Brasileiro de Cirurgioes, 44(1), 72–80. https://doi.org/10.1590/0100-69912017001011 DOI: https://doi.org/10.1590/0100-69912017001011

Chakraborty, P., Daware, A. V., Kumari, M., Chatterjee, A., Bhattacharyya, D., Mitra, G., … Tribedi, P. (2018). Free tryptophan residues inhibit quorum sensing of Pseudomonas aeruginosa: a potential approach to inhibit the development of microbial biofilm. Archives of Microbiology, 200(10), 1419–1425. https://doi.org/10.1007/s00203-018-1557-4 DOI: https://doi.org/10.1007/s00203-018-1557-4

Chemmugil, P., Lakshmi, P. T. V., & Annamalai, A. (2019). Exploring Morin as an anti-quorum sensing agent (anti-QSA) against resistant strains of Staphylococcus aureus. Microbial Pathogenesis, 127, 304–315. https://doi.org/10.1016/J.MICPATH.2018.12.007 DOI: https://doi.org/10.1016/j.micpath.2018.12.007

Choi, S. M., & Shin, E. J. (2020). The Nanofication and Functionalization of Bacterial Cellulose and Its Applications. Nanomaterials, 10(3), 406. https://doi.org/10.3390/nano10030406 DOI: https://doi.org/10.3390/nano10030406

Cordenonsi, L. M., Santer, A., Sponchiado, R. M., Wingert, N. R., Raffin, R. P., & Schapoval, E. E. S. (2020). Amazonia Products in Novel Lipid Nanoparticles for Fucoxanthin Encapsulation. AAPS PharmSciTech, 21(1), 32. https://doi.org/10.1208/s12249-019-1601-y DOI: https://doi.org/10.1208/s12249-019-1601-y

Cortes, E., Márquez, E., Mora, J. R., Puello, E., Rangel, N., De Moya, A., & Trilleras, J. (2019). Theoretical Study of the Adsorption Process of Antimalarial Drugs into Acrylamide-Base Hydrogel Model Using DFT Methods: The First Approach to the Rational Design of a Controlled Drug Delivery System. Processes 2019, Vol. 7, Page 396, 7(7), 396. https://doi.org/10.3390/PR7070396 DOI: https://doi.org/10.3390/pr7070396

COSTA, B. E. T., SANTOS, O. V. dos, CORRÊA, N. C. F., & FRANÇA, L. F. de. (2016). Comparative study on the quality of oil extracted from two tucumã varieties using supercritical carbon dioxide. Food Science and Technology, 36(2), 322–328. https://doi.org/10.1590/1678-457X.0094 DOI: https://doi.org/10.1590/1678-457X.0094

Cresti, A., Lopez-Bezanilla, A., Ordejón, P., & Roche, S. (2011). Oxygen Surface Functionalization of Graphene Nanoribbons for Transport Gap Engineering. ACS Nano, 5(11), 9271–9277. https://doi.org/10.1021/nn203573y DOI: https://doi.org/10.1021/nn203573y

de Moraes, E. E., Tonel, M. Z., Fagan, S. B., & Barbosa, M. C. (2019). Density functional theory study of π-aromatic interaction of benzene, phenol, catechol, dopamine isolated dimers and adsorbed on graphene surface. Journal of Molecular Modeling, 25(10), 302. https://doi.org/10.1007/s00894-019-4185-2 DOI: https://doi.org/10.1007/s00894-019-4185-2

de Oliveira, P. V., Goulart, L., Dos Santos, C. L., Rossato, J., Fagan, S. B., Zanella, I., … González-Durruthy, M. (2020). Computational Modeling of Environmental Co-exposure on Oil-Derived Hydrocarbon Overload by Using Substrate-Specific Transport Protein (TodX) with Graphene Nanostructures. Current Topics in Medicinal Chemistry, 20(25), 2308–2325. https://doi.org/10.2174/1568026620666200820145412 DOI: https://doi.org/10.2174/1568026620666200820145412

De Salvi, D. T. B., da S. Barud, H., Treu-Filho, O., Pawlicka, A., Mattos, R. I., Raphael, E., & Ribeiro, S. J. L. (2014). Preparation, thermal characterization, and DFT study of the bacterial cellulose. Journal of Thermal Analysis and Calorimetry, 118(1), 205–215. https://doi.org/10.1007/s10973-014-3969-y DOI: https://doi.org/10.1007/s10973-014-3969-y

Deka, B. C., & Bhattacharyya, P. K. (2017). DFT study on host-guest interaction in chitosan–amino acid complexes. Computational and Theoretical Chemistry, 1110, 40–49. https://doi.org/10.1016/j.comptc.2017.03.036 DOI: https://doi.org/10.1016/j.comptc.2017.03.036

Dow, M., & Naughton, L. M. (2017). Amphiphilic Lipids, Signaling Molecules, and Quorum Sensing. In Cellular Ecophysiology of Microbe (pp. 1–19). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-20796-4_31-1 DOI: https://doi.org/10.1007/978-3-319-20796-4_31-1

El-Wakil, N. A., Hassan, E. A., Hassan, M. L., & El-Salam, S. S. A. (2019). Bacterial cellulose/phytochemical’s extracts biocomposites for potential active wound dressings. Environmental Science and Pollution Research, 26(26), 26529–26541. DOI: https://doi.org/10.1007/s11356-019-05776-w

Espinosa-Urgel, M. (2016). Fatty Acids as Mediators of Intercellular Signaling. In Cellular Ecophysiology of Microbe (pp. 1–13). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-20796-4_7-1 DOI: https://doi.org/10.1007/978-3-319-20796-4_7-1

Feinstein, W. P., & Brylinski, M. (2015). Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. Journal of Cheminformatics, 7(1), 18. https://doi.org/10.1186/s13321-015-0067-5 DOI: https://doi.org/10.1186/s13321-015-0067-5

Fernandes, C. P. (2015). Development of Nanoemulsions with Tucumã (Astrocaryum vulgare) Fruits Oil. Journal of Nanomedicine Research, 2(2), 1–4. https://doi.org/10.15406/jnmr.2015.02.00024 DOI: https://doi.org/10.15406/jnmr.2015.02.00024

Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols 2016 11:5, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051 DOI: https://doi.org/10.1038/nprot.2016.051

Frykberg, R. G., & Banks, J. (2015). Challenges in the Treatment of Chronic Wounds. Advances in Wound Care, 4(9), 560–582. https://doi.org/10.1089/wound.2015.0635 DOI: https://doi.org/10.1089/wound.2015.0635

Gethin, G. (2007). The significance of surface pH in chronic wounds. Wounds, 3(3), 52–56.

Gnanendra, S., Anusuya, S., & Natarajan, J. (2012). Molecular modeling and active site analysis of SdiA homolog, a putative quorum sensor for Salmonella typhimurium pathogenecity reveals specific binding patterns of AHL transcriptional regulators. Journal of Molecular Modeling, 18(10), 4709–4719. https://doi.org/10.1007/s00894-012-1469-1 DOI: https://doi.org/10.1007/s00894-012-1469-1

Gorgieva, S. (2020). Bacterial Cellulose as a Versatile Platform for Research and Development of Biomedical Materials. Processes, 8(5), 1–26. DOI: https://doi.org/10.3390/pr8050624

Gould, A., Schweizer, H. P., Churchill, M. E. A., Gould, T. A., Schweizer, H. P., & Churchill, M. E. A. (2004). Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Molecular Microbiology, 53(4), 1135–1146. https://doi.org/10.1111/J.1365-2958.2004.04211.X DOI: https://doi.org/10.1111/j.1365-2958.2004.04211.x

Gould, L., Abadir, P., Brem, H., Carter, M., Conner-Kerr, T., Davidson, J., … Schmader, K. (2015). Chronic Wound Repair and Healing in Older Adults: Current Status and Future Research. Journal of the American Geriatrics Society, 63(3), 427. https://doi.org/10.1111/JGS.13332 DOI: https://doi.org/10.1111/jgs.13332

Hema, K., Ahamad, S., Joon, H. K., Pandey, R., & Gupta, D. (2021). Atomic resolution homology models and molecular dynamics simulations of plasmodium falciparum tubulins. ACS Omega, 6(27), 17510–17522. https://doi.org/10.1021/ACSOMEGA.1C01988/SUPPL_FILE/AO1C01988_SI_001.PDF DOI: https://doi.org/10.1021/acsomega.1c01988

Hernández Rosas, J. J., Ramírez Gutiérrez, R. E., Escobedo-Morales, A., & Chigo Anota, E. (2011). First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide. Journal of Molecular Modeling, 17(5), 1133–1139. https://doi.org/10.1007/s00894-010-0818-1 DOI: https://doi.org/10.1007/s00894-010-0818-1

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864–B871. https://doi.org/10.1103/PhysRev.136.B864 DOI: https://doi.org/10.1103/PhysRev.136.B864

Homaeigohar, S., & Boccaccini, A. R. (2020). Antibacterial biohybrid nanofibers for wound dressings. Acta Biomaterialia, 107, 25–49. DOI: https://doi.org/10.1016/j.actbio.2020.02.022

Huang, J., Shi, Y., Zeng, G., Gu, Y., Chen, G., Shi, L., … Zhou, J. (2016). Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. Chemosphere, 157, 137–151. https://doi.org/10.1016/j.chemosphere.2016.05.032 DOI: https://doi.org/10.1016/j.chemosphere.2016.05.032

Ituen, E. B., Essien, E. A., Udo, U. E., & Oluwaseyi, O. R. (2014). Experimental and theoretical study of corrosion inhibition effect of Cucumeropsis mannii N. seed oil metallic soap of zinc on mild steel surface in sulphuric acid. Advances in Applied Science Researcha, 5(3), 1–28.

Jauris, I. M., Matos, C. F., Saucier, C., Lima, E. C., Zarbin, A. J. G., Fagan, S. B., … Zanella, I. (2016). Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 18(3), 1526–1536. https://doi.org/10.1039/C5CP05940B DOI: https://doi.org/10.1039/C5CP05940B

Jauris, Iuri M., Fagan, S. B., Adebayo, M. A., & Machado, F. M. (2016). Adsorption of acridine orange and methylene blue synthetic dyes and anthracene on single wall carbon nanotubes: A first principle approach. Computational and Theoretical Chemistry, 1076, 42–50. https://doi.org/10.1016/j.comptc.2015.11.021 DOI: https://doi.org/10.1016/j.comptc.2015.11.021

Jean-Quartier, C., Jeanquartier, F., Jurisica, I., & Holzinger, A. (2018). In silico cancer research towards 3R. BMC Cancer, 18(1). https://doi.org/10.1186/S12885-018-4302-0 DOI: https://doi.org/10.1186/s12885-018-4302-0

Jones, E. M., Cochrane, C. A., & Percival, S. L. (2015). The Effect of pH on the Extracellular Matrix and Biofilms. Advances in Wound Care, 4(7), 431–439. https://doi.org/10.1089/wound.2014.0538 DOI: https://doi.org/10.1089/wound.2014.0538

Jozala, A. F., de Lencastre-Novaes, L. C., Lopes, A. M., de Carvalho Santos-Ebinuma, V., Mazzola, P. G., Pessoa-Jr, A., … Chaud, M. V. (2016). Bacterial nanocellulose production and application: a 10-year overview. Applied Microbiology and Biotechnology, 100(5), 2063–2072. https://doi.org/10.1007/s00253-015-7243-4 DOI: https://doi.org/10.1007/s00253-015-7243-4

Kanikireddy, V., Varaprasad, K., Jayaramudu, T., Karthikeyan, C., & Sadiku, R. (2020). Carboxymethyl cellulose-based materials for infection control and wound healing: A review. International Journal of Biological Macromolecules, 164, 963–975. DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.160

Kapil, J., Shukla, P., & Pathak, A. (2020). Review Article on Density Functional Theory. In Springer Proceedings in Physics (Vol. 256, pp. 211–220). Springer, Singapore. https://doi.org/10.1007/978-981-15-8625-5_22 DOI: https://doi.org/10.1007/978-981-15-8625-5_22

Kecili, R., & Hussain, C. M. (2018). Mechanism of Adsorption on Nanomaterials. In Nanomaterials in Chromatography (pp. 89–115). Elsevier. https://doi.org/10.1016/B978-0-12-812792-6.00004-2 DOI: https://doi.org/10.1016/B978-0-12-812792-6.00004-2

Kohn, W., & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A), A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133 DOI: https://doi.org/10.1103/PhysRev.140.A1133

Kondo, T., Rytczak, P., & Bielecki, S. (2016). Bacterial NanoCellulose Characterization. Bacterial Nanocellulose: From Biotechnology to Bio-Economy, 59–71. https://doi.org/10.1016/B978-0-444-63458-0.00004-4 DOI: https://doi.org/10.1016/B978-0-444-63458-0.00004-4

Kumar, P., Lee, J.-H., Beyenal, H., & Lee, J. (2020). Fatty Acids as Antibiofilm and Antivirulence Agents. Trends in Microbiology, 28(9), 753–768. DOI: https://doi.org/10.1016/j.tim.2020.03.014

Kwiatkowski, P., Pruss, A., Masiuk, H., Mnichowska-Polanowska, M., Kaczmarek, M., Giedrys-Kalemba, S., … Sienkiewicz, M. (2019). The effect of fennel essential oil and trans-anethole on antibacterial activity of mupirocin against Staphylococcus aureus isolated from asymptomatic carriers. Postepy Dermatologii i Alergologii, 36(3), 308–314. https://doi.org/10.5114/ada.2018.76425 DOI: https://doi.org/10.5114/ada.2018.76425

Lalouckova, K., Skrivanova, E., Rondevaldova, J., Frankova, A., Soukup, J., & Kokoska, L. (2021). In vitro antagonistic inhibitory effects of palm seed crude oils and their main constituent, lauric acid, with oxacillin in Staphylococcus aureus. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-020-80481-0 DOI: https://doi.org/10.1038/s41598-020-80481-0

Leonard, P. G., Bezar, I. F., Sidote, D. J., & Stock, A. M. (2012). Identification of a hydrophobic cleft in the LytTR domain of AgrA as a locus for small molecule interactions that inhibit DNA binding. Biochemistry, 51(50), 10035–10043. https://doi.org/10.1021/BI3011785/ASSET/IMAGES/MEDIUM/BI-2012-011785_0006.GIF DOI: https://doi.org/10.1021/bi3011785

Leonardi, B., Arauz, L. J. De, & Baruque-Ramos, J. (2019). Chemical characterization of Amazonian non-polar vegetal extracts (buriti, tucumã, Brazil nut, cupuaçu, and cocoa) by infrared spectroscopy (FTIR) and gas chromatography (GC-FID). Infarma - Ciências Farmacêuticas, 31(3), 163–176. DOI: https://doi.org/10.14450/2318-9312.v31.e3.a2019.pp163-176

Li, B., Ou, P., Wei, Y., Zhang, X., & Song, J. (2018). Polycyclic Aromatic Hydrocarbons Adsorption onto Graphene: A DFT and AIMD Study. Materials, 11(5), 726. https://doi.org/10.3390/ma11050726 DOI: https://doi.org/10.3390/ma11050726

Li, Y., Lin, M., & Davenport, J. W. (2011). Ab Initio Studies of Cellulose I: Crystal Structure, Intermolecular Forces, and Interactions with Water. The Journal of Physical Chemistry C, 115(23), 11533–11539. https://doi.org/10.1021/jp2006759 DOI: https://doi.org/10.1021/jp2006759

Lim, G.-H., Singhal, R., Kachroo, A., & Kachroo, P. (2017). Fatty Acid– and Lipid-Mediated Signaling in Plant Defense. Annual Review of Phytopathology, 55(1), 505–536. https://doi.org/10.1146/annurev-phyto-080516-035406 DOI: https://doi.org/10.1146/annurev-phyto-080516-035406

Lopreiato, M., Di Cristofano, S., Cocchiola, R., Mariano, A., Guerrizio, L., Scandurra, R., … Scotto d’Abusco, A. (2021). Biochemical and Computational Studies of the Interaction between a Glucosamine Derivative, NAPA, and the IKKα Kinase. International Journal of Molecular Sciences, 22(4), 1643. https://doi.org/10.3390/ijms22041643 DOI: https://doi.org/10.3390/ijms22041643

Machado, F. M., Carmalin, S. A., Lima, E. C., Dias, S. L. P., Prola, L. D. T., Saucier, C., … Fagan, S. B. (2016). Adsorption of Alizarin Red S Dye by Carbon Nanotubes: An Experimental and Theoretical Investigation. The Journal of Physical Chemistry C, 120(32), 18296–18306. https://doi.org/10.1021/acs.jpcc.6b03884 DOI: https://doi.org/10.1021/acs.jpcc.6b03884

Miar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A. R., & Hatamjafari, F. (2021). Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[ d ]thiazole-2(3 H )-imine and its para -substituted der. Journal of Chemical Research, 45(1–2), 147–158. https://doi.org/10.1177/1747519820932091 DOI: https://doi.org/10.1177/1747519820932091

Moghadam, M. T., Khoshbayan, A., Chegini, Z., Farahani, I., & Shariati, A. (2020). Bacteriophages, a New Therapeutic Solution for Inhibiting Multidrug-Resistant Bacteria Causing Wound Infection: Lesson from Animal Models and Clinical Trials. Drug Design, Development and Therapy, Volume 14, 1867–1883. DOI: https://doi.org/10.2147/DDDT.S251171

Mohammed, N. J., Othman, N. K., Taib, M. F. M., Samat, M. H., & Yahya, S. (2021). Experimental and Theoretical Studies on Extract of Date Palm Seed as a Green Anti-Corrosion Agent in Hydrochloric Acid Solution. Molecules, 26(12), 1–18. https://doi.org/10.3390/molecules26123535 DOI: https://doi.org/10.3390/molecules26123535

Nethi, S. K., Das, S., Patra, C. R., & Mukherjee, S. (2019). Recent advances in inorganic nanomaterials for wound-healing applications. Biomaterials Science, 7(7), 2652–2674. DOI: https://doi.org/10.1039/C9BM00423H

Nogueira, J. R., Verza, F. A., Nishimura, F., Das, U., Caruso, Í. P., Fachin, A. L., Marins, M. (2021). Molecular Docking Studies of Curcumin Analogues against SARS-CoV-2 Spike Protein. Journal of the Brazilian Chemical Society, 32(10), 1943–1955. https://doi.org/10.21577/0103-5053.20210085 DOI: https://doi.org/10.21577/0103-5053.20210085

Norrrahim, M. N. F., Nurazzi, N. M., Jenol, M. A., Farid, M. A. A., Janudin, N., Ujang, F. A., … Ilyas, R. A. (2021). Emerging development of nanocellulose as an antimicrobial material: an overview. Materials Advances, 2(11), 3538–3551. https://doi.org/10.1039/D1MA00116G DOI: https://doi.org/10.1039/D1MA00116G

Olsson, M., Järbrink, K., Divakar, U., Bajpai, R., Upton, Z., Schmidtchen, A., & Car, J. (2019). The humanistic and economic burden of chronic wounds: A systematic review. Wound Repair and Regeneration, 27(1), 114–125. https://doi.org/10.1111/wrr.12683 DOI: https://doi.org/10.1111/wrr.12683

Oviedo, V. R., Balbé, F. P., Rodrigues Jr., L. F., Sagrillo, M. R., Fagan, S. B., & Fernandes, L. da S. (2021). Bacterial nanocellulose membranes as potential chronic wound dressing: influence of alternative culture media on nanofiber diameter - a brief review. Disciplinarum Scientia - Ciências Naturais e Tecnológicas, 22(3), 31–44. https://doi.org/10.37779/nt.v22i3.4091 DOI: https://doi.org/10.37779/nt.v22i3.4091

Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., Cai, Y. (2020). Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal, 122, 1–30. DOI: https://doi.org/10.1016/j.eurpolymj.2019.109365

Papenfort, K., & Bassler, B. L. (2016). Quorum sensing signal–response systems in Gram-negative bacteria. Nature Reviews Microbiology, 14(9), 576–588. https://doi.org/10.1038/nrmicro.2016.89 DOI: https://doi.org/10.1038/nrmicro.2016.89

Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23(10), 5048. https://doi.org/10.1103/PhysRevB.23.5048 DOI: https://doi.org/10.1103/PhysRevB.23.5048

Pereira dos Santos, E., Nicácio, P. H. M., Coêlho Barbosa, F., Nunes da Silva, H., Andrade, A. L. S., Lia Fook, M. V., Farias Leite, I. (2019). Chitosan/Essential Oils Formulations for Potential Use as Wound Dressing: Physical and Antimicrobial Properties. Materials, 12(14), 1–21. https://doi.org/10.3390/ma12142223 DOI: https://doi.org/10.3390/ma12142223

Pontoh, R., Rarisavitri, V. E., Yang, C. C., Putra, M. F., & Anugrah, D. S. B. (2022). Density Functional Theory Study of Intermolecular Interactions between Amylum and Cellulose. Indonesian Journal of Chemistry, 22(1), 253. https://doi.org/10.22146/ijc.69241 DOI: https://doi.org/10.22146/ijc.69241

Portela, R., Leal, C. R., Almeida, P. L., & Sobral, R. G. (2019). Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microbial Biotechnology, 12(4), 586–610. DOI: https://doi.org/10.1111/1751-7915.13392

Rahmawati, S., Radiman, C. L., & Martoprawiro, M. A. (2018). Density Functional Theory (DFT) and Natural Bond Orbital (NBO) Analysis of Intermolecular Hydrogen Bond Interaction in “Phosphorylated Nata De Coco - Water.” Indonesian Journal of Chemistry, 18(1), 173. https://doi.org/10.22146/ijc.25170 DOI: https://doi.org/10.22146/ijc.25170

Ramos, P., Schmitz, M., Gama, S., Portantiolo, A., Durruthy, M. G., de Souza Votto, A. P., … Monserrat, J. M. (2018). Cytoprotection of lipoic acid against toxicity induced by saxitoxin in hippocampal cell line HT-22 through in silico modeling and in vitro assays. Toxicology, 393, 171–184. https://doi.org/10.1016/j.tox.2017.11.004 DOI: https://doi.org/10.1016/j.tox.2017.11.004

Rehman, Z. U., & Leiknes, T. O. (2018). Quorum-quenching bacteria isolated from red sea sediments reduce biofilm formation by Pseudomonas aeruginosa. Frontiers in Microbiology, 9(1354), 1–13. https://doi.org/10.3389/FMICB.2018.01354/BIBTEX DOI: https://doi.org/10.3389/fmicb.2018.01354

Rossato, A., Silveira, L. da S., Oliveira, P. S., Filho, W. P. de S., Wagner, R., Klein, B., … Sagrillo, M. R. (2020). Evaluation of anti-inflammatory and healing activity of a nano-structured lipid carrier containing tucuman butter oil and butter. Disciplinarum Scientia - Ciências Naturais e Tecnológicas, 21(3), 99–108. https://doi.org/10.37779/nt.v21i3.3551 DOI: https://doi.org/10.37779/nt.v21i3.3551

Rossato, A., Silveira, L. da S., Oliveira, P. S., Souza, T. T. de, Becker, A. P., Wagner, R., … Sagrillo, M. R. (2021). Safety profile, antimicrobial and antibiofilm activities of a nanostructured lipid carrier containing oil and butter from Astrocaryum vulgare: in vitro studies. International Journal for Innovation Education and Research, 9(5), 478–497. https://doi.org/10.31686/ijier.vol9.iss5.3113 DOI: https://doi.org/10.31686/ijier.vol9.iss5.3113

Ruiz-Morales, Y. (2002). HOMO−LUMO Gap as an Index of Molecular Size and Structure for Polycyclic Aromatic Hydrocarbons (PAHs) and Asphaltenes: A Theoretical Study. I. Journal of Physical Chemistry A, 106(46), 11283–11308. https://doi.org/10.1021/JP021152E DOI: https://doi.org/10.1021/jp021152e

SALIHU, R., FOONG, C. Y. E. E., RAZAK, S. I. A. B. D., KADIR, M. R. A., YUSOF, A. H. M., & NAYAN, G. H. M. A. T. (2019). Overview of inexpensive production routes of bacterial cellulose and its applications in biomedical engineering. Cellulose Chemistry and Technology, 53(1–2), 1–13. DOI: https://doi.org/10.35812/CelluloseChemTechnol.2019.53.01

Santos, J. G. S., Macedo-Filho, A., Silva, A. M., de Sousa, F. F., Caetano, E. W. S., da Silva, M. B., & Freire, V. N. (2021). Computational structural, electronic and optical properties of the palmitic acid in its C form. Journal of Molecular Modeling, 27(5), 145. https://doi.org/10.1007/s00894-021-04752-x DOI: https://doi.org/10.1007/s00894-021-04752-x

Schopf, P. F., Zanella, I., Cordeiro, M. N. D. S., Ruso, J. M., González-Durruthy, M., & Martins, M. O. (2021). Nanomarker for Early Detection of Alzheimer’s Disease Combining Ab initio DFT Simulations and Molecular Docking Approach. Biophysica 2021, Vol. 1, Pages 76-86, 1(2), 76–86. https://doi.org/10.3390/BIOPHYSICA1020007 DOI: https://doi.org/10.3390/biophysica1020007

Schweiker, S. S., & Levonis, S. M. (2020). Navigating the intricacies of molecular docking. Future Medicinal Chemistry, 12(6), 469–471. https://doi.org/10.4155/fmc-2019-0355 DOI: https://doi.org/10.4155/fmc-2019-0355

Sekar, P. C., Paul, D. M., Srinivasan, E., & Rajasekaran, R. (2021). Unravelling the molecular effect of ocellatin-1, F1, K1 and S1, the frog-skin antimicrobial peptides to enhance its therapeutics—quantum and molecular mechanical approaches. Journal of Molecular Modeling, 27(1), 10. https://doi.org/10.1007/s00894-020-04652-6 DOI: https://doi.org/10.1007/s00894-020-04652-6

Shahi, S. K., Singh, V. K., Kumar, A., Gupta, S. K., & Singh, S. K. (2013). Interaction of dihydrofolate reductase and aminoglycoside adenyltransferase enzyme from Klebsiella pneumoniae multidrug resistant strain DF12SA with clindamycin: a molecular modelling and docking study. Journal of Molecular Modeling, 19(3), 973–983. https://doi.org/10.1007/s00894-012-1635-5 DOI: https://doi.org/10.1007/s00894-012-1635-5

Shoemark, D. K., Colenso, C. K., Toelzer, C., Gupta, K., Sessions, R. B., Davidson, A. D., Mulholland, A. J. (2021). Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARS‐CoV‐2 Spike Protein. Angewandte Chemie International Edition, 60(13), 7098–7110. https://doi.org/10.1002/anie.202015639 DOI: https://doi.org/10.1002/anie.202015639

Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., & Sánchez-Portal, D. (2002). The SIESTA method for ab initio order- N materials simulation. Journal of Physics: Condensed Matter, 14(11), 2745–2779. https://doi.org/10.1088/0953-8984/14/11/302 DOI: https://doi.org/10.1088/0953-8984/14/11/302

Stumpf, T. R., Yang, X., Zhang, J., & Cao, X. (2018). In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Materials Science and Engineering: C, 82, 372–383. DOI: https://doi.org/10.1016/j.msec.2016.11.121

Subramani, R., & Jayaprakashvel, M. (2019). Bacterial Quorum Sensing: Biofilm Formation, Survival Behaviour and Antibiotic Resistance. In Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry (pp. 21–37). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-32-9409-7_3 DOI: https://doi.org/10.1007/978-981-32-9409-7_3

Teixeira, M. A., Paiva, M. C., Amorim, M. T. P., & Felgueiras, H. P. (2020). Electrospun Nanocomposites Containing Cellulose and Its Derivatives Modified with Specialized Biomolecules for an Enhanced Wound Healing. Nanomaterials, 10(3), 557. https://doi.org/10.3390/nano10030557 DOI: https://doi.org/10.3390/nano10030557

Tonel, M. Z., González-Durruthy, M., Zanella, I., & Fagan, S. B. (2019). Interactions of graphene derivatives with glutamate-neurotransmitter: A parallel first principles - Docking investigation. Journal of Molecular Graphics and Modelling, 88, 121–127. https://doi.org/10.1016/j.jmgm.2019.01.007 DOI: https://doi.org/10.1016/j.jmgm.2019.01.007

Tournus, F., & Charlier, J.-C. (2005). Ab initio study of benzene adsorption on carbon nanotubes. Physical Review B, 71(16), 165421. https://doi.org/10.1103/PhysRevB.71.165421 DOI: https://doi.org/10.1103/PhysRevB.71.165421

Tournus, F., Latil, S., Heggie, M. I., & Charlier, J.-C. (2005). π-stacking interaction between carbon nanotubes and organic molecules. Physical Review B, 72(7), 075431. https://doi.org/10.1103/PhysRevB.72.075431 DOI: https://doi.org/10.1103/PhysRevB.72.075431

Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), NA-NA. https://doi.org/10.1002/jcc.21334 DOI: https://doi.org/10.1002/jcc.21334

Varier, K. M., Gudeppu, M., Chinnasamy, A., Thangarajan, S., Balasubramanian, J., Li, Y., & Gajendran, B. (2019). Nanoparticles: Antimicrobial Applications and Its Prospects. Advanced Nanostructured Materials for Environmental Remediation, 25, 321. https://doi.org/10.1007/978-3-030-04477-0_12 DOI: https://doi.org/10.1007/978-3-030-04477-0_12

Vilela, C., Freire, C. S. R., Araújo, C., Rudić, S., Silvestre, A. J. D., Vaz, P. D., Nolasco, M. M. (2020). Understanding the Structure and Dynamics of Nanocellulose-Based Composites with Neutral and Ionic Poly(methacrylate) Derivatives Using Inelastic Neutron Scattering and DFT Calculations. Molecules, 25(7), 1–16. https://doi.org/10.3390/molecules25071689 DOI: https://doi.org/10.3390/molecules25071689

Wang, K., Wang, F., Lou, Z., Han, Q., Zhao, Q., Hu, K., … Li, J. (2020). Relationship between the Electrical Characteristics of Molecules and Fast Streamers in Ester Insulation Oil. International Journal of Molecular Sciences 2020, Vol. 21, Page 974, 21(3), 1–13. https://doi.org/10.3390/IJMS21030974 DOI: https://doi.org/10.3390/ijms21030974

Wang, Y., Lu, Y., Zhang, J., Hu, X., Yang, Z., Guo, Y., & Wang, Y. (2019). A synergistic antibacterial effect between terbium ions and reduced graphene oxide in a poly(vinyl alcohol)-alginate hydrogel for treating infected chronic wounds. Journal of Materials Chemistry B, 7(4), 538–547. DOI: https://doi.org/10.1039/C8TB02679C

Xiao, Y., Ahadian, S., & Radisic, M. (2017). Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment. Tissue Engineering Part B: Reviews, 23(1), 9–26. DOI: https://doi.org/10.1089/ten.teb.2016.0200

Zarei, S., Niad, M., & Raanaei, H. (2018). The removal of mercury ion pollution by using Fe3O4-nanocellulose: Synthesis, characterizations and DFT studies. Journal of Hazardous Materials, 344, 258–273. https://doi.org/10.1016/j.jhazmat.2017.10.009 DOI: https://doi.org/10.1016/j.jhazmat.2017.10.009

Zhang, G., & Musgrave, C. B. (2007). Comparison of DFT methods for molecular orbital eigenvalue calculations. Journal of Physical Chemistry A, 111(8), 1554–1561. https://doi.org/10.1021/ DOI: https://doi.org/10.1021/jp061633o

Zhang, X., Shu, W., Yu, Q., Qu, W., Wang, Y., & Li, R. (2020). Functional Biomaterials for Treatment of Chronic Wound. Frontiers in Bioengineering and Biotechnology, 8, 516. DOI: https://doi.org/10.3389/fbioe.2020.00516

Downloads

Published

2022-12-01

How to Cite

Oviedo, V. R., Zancan Tonel, M., Paixão de Souza Filho, W., Rodrigues Jr., L. F., Rorato Sagrillo, M., Binotto Fagan, S., & da Silva Fernandes, L. (2022). Bacterial nanocellulose and long-chain fatty acids interaction: an in silico study. International Journal for Innovation Education and Research, 10(12), 218-249. https://doi.org/10.31686/ijier.vol10.iss12.4027
Received 2022-11-07
Accepted 2022-11-18
Published 2022-12-01

Most read articles by the same author(s)