Biogenic Synthesis and antibiofilm efficacy of iron nanoparticles via computer simulation

Authors

DOI:

https://doi.org/10.31686/ijier.vol10.iss8.3686

Keywords:

Microalgae, Nanoparticle, Phytochelatin, in silico

Abstract

The search for new drugs can be accelerated by in silico methods, i.e., fully computational methods known for their speed and low cost, allowing the analysis of a large amount of data, e.g., thousands of possible antimicrobials, in a few weeks. Molecular docking and first-principles calculations are great allies in this quest. They enable the assessment of protein-ligand interactions and can predict interactions between NPs and macromolecules to provide more information about the interactions and dynamics of NPs in biological systems. In this context, this work aims to use in silico methods to detect the formation of biogenic metallic nanoparticles from functional microalgal biomolecules of the genus Chlorella, which have chelation of metal ions as a fundamental property, and to verify the possible antibacterial biofilm efficacy using computational tools such as molecular docking. In a first analysis, it was found that the iron salt FeSO4 was the most suitable to bind the microalgal enzyme and produce its phytochelatin protein. Following this result, an analysis of the electronic structure of the phytochelatin complex with the iron salt was carried out, proving its structural modification at the nanometric level, after which an analysis of its therapeutic effect on antibiofilm activity was performed. S. aureus, a bacterium known for its multiresistant to antibiotics, these results demonstrate, through alternative in silico methods, the physiological role of phytochelatin from microalgae in the detoxification and bioremediation of metallic contaminants.

Downloads

Download data is not yet available.

References

Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. “The Protein Data Bank”. Nucleic Acids Research, vol. 28, no. 1, 2000, doi:https://doi.org/10.1093/nar/28.1.235. DOI: https://doi.org/10.1093/nar/28.1.235

Ceperley, D. M., and B. J. Alder. “Ground State of the Electron Gas by a Stochastic Method”. Physical Review Letters, vol. 45, no. 7, 1980, doi:https://doi.org/10.1103/PhysRevLett.45.566. DOI: https://doi.org/10.1103/PhysRevLett.45.566

Chia, J. C., C. C. Yang, Y. T. Sui, S. Y. Lin, and R. H. Juang. “Tentative Identification of the Second Substrate Binding Site in Arabidopsis Phytochelatin Synthase”. PLoS ONE, vol. 8, no. 12, 2013, doi:https://doi.org/10.1371/journal.pone.0082675. DOI: https://doi.org/10.1371/journal.pone.0082675

Chia, J.-C. “Phytochelatin Synthase in Heavy Metal Detoxification and Xenobiotic Metabolism”. Biodegradation [Working Title], IntechOpen, 2021, doi:https://doi.org/10.5772/intechopen.99077. DOI: https://doi.org/10.5772/intechopen.99077

Costa, D. M., K. Johani, D. S. Melo, L. K. Lopes, L. K. Lopes Lima, A. F. Tipple, H. Hu, and K. Vickery. “Biofilm Contamination of High-Touched Surfaces in Intensive Care Units: Epidemiology and Potential Impacts”. Letters in Applied Microbiology, vol. 68, no. 4, 2019, doi:https://doi.org/10.1111/lam.13127. DOI: https://doi.org/10.1111/lam.13127

Dennis, K. K., K. Uppal, K. H. Liu, C. Ma, B. Liang, Y. M. Go, and D. P. Jones. “Phytochelatin Database: A Resource for Phytochelatin Complexes of Nutritional and Environmental Metals”. Database, vol. 2019, no. 1, 2019, doi:https://doi.org/10.1093/database/baz083. DOI: https://doi.org/10.1093/database/baz083

Eberhardt, J., D. Santos-Martins, A. F. Tillack, and S. Forli. “AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings”. Journal of Chemical Information and Modeling, vol. 61, no. 8, 2021, doi:https://doi.org/10.1021/acs.jcim.1c00203. DOI: https://doi.org/10.1021/acs.jcim.1c00203

Hohenberg, P., and W. Kohn. “Inhomogeneous Electron Gas”. Physical Review, vol. 136, no. 3B, 1964, doi:https://doi.org/10.1103/PhysRev.136.B864. DOI: https://doi.org/10.1103/PhysRev.136.B864

Jacob, J. M., R. Ravindran, M. Narayanan, S. M. Samuel, A. Pugazhendhi, and G. Kumar. “Microalgae: A Prospective Low Cost Green Alternative for Nanoparticle Synthesis”. Current Opinion in Environmental Science &Amp; Health, vol. 20, 2021, doi:https://doi.org/10.1016/j.coesh.2019.12.005. DOI: https://doi.org/10.1016/j.coesh.2019.12.005

Laskowski, R. A., and M. B. Swindells. “LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery”. Journal of Chemical Information and Modeling, vol. 51, no. 10, 2011, doi:https://doi.org/10.1021/ci200227u. DOI: https://doi.org/10.1021/ci200227u

Mukherjee, S., and B. L. Bassler. “Bacterial Quorum Sensing in Complex and Dynamically Changing Environments”. Nature Reviews Microbiology, vol. 17, no. 6, 2019, doi:https://doi.org/10.1038/s41579-019-0186-5. DOI: https://doi.org/10.1038/s41579-019-0186-5

Perdew, J. P., K. Burke, and M. Ernzerhof. “Generalized Gradient Approximation Made Simple”. Physical Review Letters, vol. 77, no. 18, 1996, doi:https://doi.org/10.1103/PhysRevLett.77.3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

Pinto, R. M., D. Lopes-De-Campos, M. C. L. Martins, P. Dijck, C. Nunes, and S. Reis. “Impact of Nanosystems in Staphylococcus Aureus Biofilms Treatment”. FEMS Microbiology Reviews, vol. 43, no. 6, 2019, doi:https://doi.org/10.1093/femsre/fuz021. DOI: https://doi.org/10.1093/femsre/fuz021

Sandhya, J., and S. Kalaiselvam. “Biogenic Synthesis of Magnetic Iron Oxide Nanoparticles Using Inedible Borassus Flabellifer Seed Coat: Characterization, Antimicrobial, Antioxidant Activity and in Vitro Cytotoxicity Analysis”. Materials Research Express, vol. 7, no. 1, 2020, doi:https://doi.org/10.1088/2053-1591/ab6642. DOI: https://doi.org/10.1088/2053-1591/ab6642

Sharma, R., R. Bhardwaj, N. Handa, V. Gautam, S. K. Kohli, S. Bali, P. Kaur, A. K. Thukral, S. Arora, P. Ohri, and A. P. Vig. “Responses of Phytochelatins and Metallothioneins in Alleviation of Heavy Metal Stress in Plants: An Overview”. Plant Metal Interaction: Emerging Remediation Techniques, Elsevier, 2015, doi:https://doi.org/10.1016/B978-0-12-803158-2.00010-2. DOI: https://doi.org/10.1016/B978-0-12-803158-2.00010-2

Shrivastava, S. R., P. S. Shrivastava, and J. Ramasamy. “World Health Organization Releases Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics”. JMS - Journal of Medical Society, vol. 32, no. 1, 2018, doi:https://doi.org/10.4103/jms.jms_25_17. DOI: https://doi.org/10.4103/jms.jms_25_17

Snyder, H. D., and T. G. Kucukkal. “Computational Chemistry Activities With Avogadro and ORCA”. Journal of Chemical Education, vol. 98, no. 4, 2021, doi:https://doi.org/10.1021/acs.jchemed.0c00959. DOI: https://doi.org/10.1021/acs.jchemed.0c00959

Soler, J. M., E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal. “The SIESTA Method for Ab Initio Order-N Materials Simulation”. Journal of Physics Condensed Matter, vol. 14, no. 11, 2002, doi:https://doi.org/10.1088/0953-8984/14/11/302. DOI: https://doi.org/10.1088/0953-8984/14/11/302

Troullier, N., and J. L. Martins. “Efficient Pseudopotentials for Plane-Wave Calculations”. Physical Review B, vol. 43, no. 3, 1991, doi:https://doi.org/10.1103/PhysRevB.43.1993. DOI: https://doi.org/10.1103/PhysRevB.43.1993

Downloads

Published

2022-08-01

How to Cite

De Sousa Filho, W. P., Zancan Tonel, M. ., Rodrigues Oviedo, V. ., da Silva Fernandes, L. ., de Souza, D. ., & Rorato Sagrillo, M. (2022). Biogenic Synthesis and antibiofilm efficacy of iron nanoparticles via computer simulation. International Journal for Innovation Education and Research, 10(8), 1-10. https://doi.org/10.31686/ijier.vol10.iss8.3686
Received 2022-02-13
Accepted 2022-03-05
Published 2022-08-01

Most read articles by the same author(s)