From real to virtual eyes
a classification almost 4.0 tomatoes.
DOI:
https://doi.org/10.31686/ijier.vol7.iss11.1994Keywords:
Agricultural machinery, sensing, technologies 3.0, CIELABAbstract
The change in the color of the vegetables peel during the ripening process is the main criterion used by the consumer to define the fruit ripeness degree and for the producer to determine the best time of harvest. This relationship between bark coloration and different maturation stages allows the producer to establish harvest planning and extend shelf life. Students and faculty of the Biosystems Engineering course at São Paulo State University (UNESP), Tupã Campus, designed and developed a low-cost prototype of a fruit sorting belt, specifically for cherry group tomatoes. In the future, improvement in machinery with the insertion of new devices such as cameras, embedded system, combines sensor technology 3.0 with machine learning 4.0.
References
[2] C. Andreuccetti, M. D. Ferreira, A. S. D. Gutierrez, M. Tavares, “Classificação e padronização dos tomates cv. Carmem e Débora dentro da CEAGESP – SP”, Jaboticabal, v.24, n.3, 2004. pp.790-798.
[3] C. J. Du, Sun, D. W, “Recent developments in the applications of image processing techniques for food quality evaluation”, Trends in Food Science & Technology, v. 15, n.5, 2004, pp.230 -249.
[4] C. M. Stinco, F. J. Rodríguez-Pulido, M. L. Escudero-Gilete, et al., “Lycopene isomers in fresh and processed tomato products: correlations with instrumental color measurements by digital image analysis and spectroradiometry”, Food Research International, Ottawa, v.50, n.1, 2013, pp.111-120.
[5] Companhia de entrepostos e armazéns gerais de São Paulo, “Centro de Qualidade em Horticultura”, Programa Brasileiro para Modernização da Horticultura: Normas de classificação de tomates, São Paulo, 2003.
[6] F. A. R. Filgueira, “Novo manual de Olericultura: agrotecnologia moderna na produção e comercialização de hortaliças”, Viçosa-MG: UFV, 2008.
[7] Fao, “Food and Agriculture Organization of the United Nations”, Disponível em: < http://www.fao.org/statistics/en/>, Acesso em: out.2019
[8] G. Piatetsky-Shapiro, et al., “Advances in knowledge discovery and data mining”, Menlo Park: AAAI press, 1996.
[9] Globo rural, “Produção de tomate será 1,2 % inferior à prevista em janeiro”, disponível em <https://revistagloborural.globo.com/Noticias/Agricultura/Hortifruti/noticia/2018/03/producao-de-tomate-sera-12-inferior-prevista-em-janeiro.html>, Acesso em: mar.2018
[10] I. H. Witten, et al., “Data Mining: Practical machine learning tools and techniques”, Morgan Kaufmann, 2016.
[11] J. Carneiro, “Análise da reflectância de argamassas”, Relatório Técnico, Braga: Universidade do Minho, 2010.
[12] K. L.Yam, S. E. Papadakis, “A simple digital imaging method for measuring and analyzing color of food surfaces”, Journal of Food Engineering, v. 61, n.1, 2004, pp. 137-142.
[13] L. Ahmed, A. B. Martin-Diana, RICO, D. Rico, et al., “Quality and nutritional status of fresh-cut tomato as affected by spraying of delactosed whey permeate compared to industrial washing treatment”, New York, v. 5, n. 8, 2011, pp. 1-12.
[14] L. M. Régula, “Padrões virtuais e tolerâncias colorimétricas no controle instrumental das cores”, Dissertação (Mestrado em Metrologia para a Qualidade Industrial)- Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2004.
[15] P. B. Pathare, U. L., F. A. AL-Said, “Colour measurement and analysis in fresh and processed foods: a review”, Food and bioprocess technology, v. 6, n. 1, 2013, pp. 36-60.
[16] R. D. Tillett, “Image analysis for agricultural processes: a review of potential opportunities”, Journal of agricultural Engineering research, v. 50, 1991, pp. 247-258.
[17] R. Perveen, et al., “Tomato (Solanum Lycopersicum) carotenoids and lycopenes chemistry; metabolism, absorption, nutrition, and allied health claims-A comprehensive review”, Critical Reviews in Food Science and Nutrition, 55 (7), 2015, pp. 919-929
[18] R. S. Castro, J. M. O. Barth, J. V. Flores, A. T. Salton, “Modelagem e implementação de um sistema ballandplate controlado por servo-visão”, XI Simpósio Brasileiro de Automação Inteligente, Fortaleza, 2013.
[19] T. Brosnan, D. W. Sun, “Improving quality inspection of food products by computer vision—a review”, Journal of Food Engineering, v. 61, n. 1, 2004, pp. 3-16.
[20] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, “From data mining to knowledge discovery in databases”, AI Magazine, v. 17, n. 3, 1996, pp. 37-37.
[21] Z. Zhang, L. Liu, M. Zhang, et al., “Effect of carbon dioxide enrichment on healthpromoting compounds and organoleptic properties of tomato fruits grown in greenhouse”, Food Chemistry, Barking, v.153, 2014, pp.157-163.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Mariana Matulovic, Cleber Alexandre de Amorim, Angela Vacaro de Souza, Paulo Sérgio Barbosa dos Santos, Geovane Yuji Aparecido Sakata, Guilherme Pulizzi Costa, Douglas Cardozo de Almeida, Jéssica Marques de Mello
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Most read articles by the same author(s)
- Juliane Forti, Mariana Matulovic, Mario Mollo Neto, Felipe Santos, Marcos Lanza, Rodnei Bertazzoli, Hydrogen Peroxide Production in an Electrochemical Flow-by Reactor using Gas Diffusion Electrodes Modified with Organic Redox Catalysts , International Journal for Innovation Education and Research: Vol. 8 No. 7 (2020): International Journal for Innovation Education and Research
- Mario Mollo Neto, Mariana Matulovic, Paulo Sérgio Barbosa dos Santos, Supervisory System For Monitoring, Control And Estimating Thermal Comfort For Broiler and Laying Hens Production Sheds , International Journal for Innovation Education and Research: Vol. 8 No. 3 (2020): International Journal for Innovation Education and Research
- Paulo Sérgio Barbosa dos Santos, Mariana Matulovic, Marcos Ribeiro da Silva Vieira, Flávio José de Oliveira Morais, Angela Vacaro de Souza, Mobile App for the Prediction of Bananas Harvest , International Journal for Innovation Education and Research: Vol. 8 No. 11 (2020): International Journal for Innovation Education and Research
- Mariana Matulovic, Flávio José de Oliveira Morais, Angela Vacaro de Souza, Cleber Aalexandre de Amorim, Luiz Fernando Sommaggio Coletta, Aflatoxin detection on direction of the 4.0 age at 3.0 costs , International Journal for Innovation Education and Research: Vol. 7 No. 7 (2019): International Journal for Innovation Education and Research