Biomass Yield, Nitrogen Content and Uptake, And Nutritive Value of Alfalfa Co-Inoculated with Plant-Growth Promoting Bacteria
DOI:
https://doi.org/10.31686/ijier.vol8.iss5.2355Keywords:
Medicago sativa, biological nitrogen fixation, diazotrophic bacteria, N-totalAbstract
Alfalfa (Medicago sativa L.) has high forage yield potential, protein quality, palatability, and digestibility, and low seasonality. The aim of this study was to evaluate the effects of strains of Sinorhizobium meliloti and Azospirillum brasilense on the nutritive content, bromatological composition (crude protein [CP], neutral detergent fiber [NDF], acid detergent fiber [ADF], and in vitro digestibility of dry weight [IVDDW]), and shoot dry weight (SDW), relative chlorophyll index (RCI), number of tillers (NT), plant height (PH), and root dry weight (RDW) and volume (RV), of alfalfa grown in a Typic Ultisol. The experiment consisted of eight combinations of plant-growth promoting bacteria (PGPB). The treatments were as follows: T1:non-inoculated control without N-fertilizer (NI); T2: NI + N-fertilizer, and inoculated with T3: Sinorhizobium (=Ensifer) meliloti SEMIA 116 + N-fertilizer; T4: S. meliloti SEMIA 116 + A. brasilense Ab-V5 + Ab-V6 + N-fertilizer; T5: S. meliloti SEMIA 134 + N-fertilizer; T6: S. meliloti SEMIA 134 + co-inoculation + N-fertilizer; T7: S. meliloti SEMIA 135 + N-fertilizer; and T8: S. meliloti SEMIA 135 + co-inoculation + N-fertilizer. S. meliloti strains are used in commercial inoculants for the alfalfa, and A. brasilense for several non-legumes and legumes in Brazil. The experiment was performed for three successive cuts under greenhouse conditions. Application of N-fertilization increases the production cost, making alfalfa cultivation unviable. Inoculation with three strains of Sinorhizobium meliloti highly promoted alfalfa growth, considering several parameters, including PH, RCI, NT, SDW and RDW, nutritive value, and with an emphasis on RV, and total N content and total N accumulated in shoots and roots. No further increases were observed with the co-inoculation with the PGPB A. brasilense. Studies in field and greenhouse conditions are necessary to verify the benefits of the use of PGPB in the cultivation of alfalfa.
References
Borreani G., Tabacco E. The effect of a baler chopping system of fermentation and losses of wrapped big bales of alfalfa. Agron. J., 98, 1-7. (2006). DOI: https://doi.org/10.2134/agronj2004.0134
Moreira, A., Fageria, N. K. Liming influence on soil chemical properties, nutritional status and yield of alfalfa grown in acid soil. Revista Brasileira de Ciência do Solo, 34:1231–1239. 2010. DOI: https://doi.org/10.1590/S0100-06832010000400022
Rassini, J.B., Ferreira, R.P., Camargo, A.C. Alfalfa cultivation and establishment [Cultivo e estabelecimento da alfafa]. In Alfalfa Cultivation and Use in the Tropics [Cultivo e Utilização da Alfafa nos Trópicos], eds. R. P. Ferreira, J. B. Rassini, A. A. Rodrigues, A. R. Freitas, A. C. Camargo, and F. C. Mendonça. 39–51. São Carlos, Brazil: Embrapa Pecuária Sudeste. 2008.
Moreira, A., et al. Soil Fertility and Nutritional Status of Alfalfa Grown in the Tropics. São Carlos, Brazil: Embrapa Pecuária Sudeste. 2007.
Ormeño-Orrillo, E., Hungria, M., Martínez-Romero, E. Dinitrogen-fixing prokaryotes. In The Prokayotes: Prokaryotic Physiology and Biochemistry, eds. E. Rosemberg, E. F. De Long, S. Lory, E. Stackebrandt, and F. Thompson. 427–451. Berlin Heidelberg: Springer-Verlag. 2013. DOI: https://doi.org/10.1007/978-3-642-30141-4_72
Moreira, A, Bernardi, A.C.C., Rassini, J.B. Soil correction, nutritional status and alfalfa fertilization [Correção do solo, estado nutricional e adubação da alfafa]. In Alfalfa Cultivation and Use in the Tropics [Cultivo e Utilização da Alfafa nos Trópicos], eds. R. P. Ferreira, J. B. Rassini, A. A. Rodrigues, A. R. Freitas, A. C. Camargo, and F. C. Mendonça. 97–137. São Carlos, Brazil: Embrapa Pecuária Sudeste. 2008.
Hungria, M., Campo, R.J., Souza, E.M. & Pedrosa, F.O. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil. 331(1/2): 413-425, (2010). https://doi.org/10.1007/s11104-009-0262-0 DOI: https://doi.org/10.1007/s11104-009-0262-0
Hungria, M., Nogueira, M.A. & Araujo, R.S. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biology and Fertility of Soils 49(7):791-801, 2013. DOI: https://doi.org/10.1007/s00374-012-0771-5
Hungria, M., Nogueira, M.A. & Araújo R.S. Inoculation of Brachiaria spp. with the plant grow-promoting bacterium Azospirillum brasilense: an environment-friendly component in the reclamation of degraded pastures in the tropics. Agriculture, Ecosystems and Environment, 221:125–131. 2016. DOI: https://doi.org/10.1016/j.agee.2016.01.024
Bashan, Y., De-Bashan, L.E. How the plant growth-promoting bacterium Azospirillum promotes plant growth–A critical assessment. Advances in Agronomy, 78:77–136. 2010. DOI: https://doi.org/10.1016/S0065-2113(10)08002-8
Pereg, L., Luz, E. & Bashan, Y. Assessment of affinity and specificity of Azospirillum for plants. Plant and Soil, 399:389-414. 2016. DOI: https://doi.org/10.1007/s11104-015-2778-9
Fukami, J., Cerezini, P. & Hungria, M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, 8(1):73. 2018. DOI: https://doi.org/10.1186/s13568-018-0608-1
Dominguez-Nuñez, J.A., Muñoz, D., Planelles, R., Grau, J.M., Artero, F., Anriquez, A. & Albanesi, A. Inoculation with Azospirillum brasilense enhances the quality of mesquite Prosopis juliflora seedlings. Forest System, 21:364–372. 2012. DOI: https://doi.org/10.5424/fs/2012213-02135
Vogel, G.F., Martinkoski, L. & Ruzicki, M. Efeitos da utilização de Azospirillum brasilense em poáceas forrageiras: importâncias e resultados. ACSA Agropecuária Científica no Semi-Árido, 10:1–6. 2014.
Leite, R.C., Santos, J.G.D., Silva, E.L., Alves, C.R.C.R., Hungria, M. & Santos, A.C. Productivity increase, reduction of nitrogen fertiliser use and drought-stress mitigation by inoculation of Marandu grass (Urochloa brizantha) with Azospirillum brasilense. Crop and Pasture Science, 70(1):61-67. 2018. DOI: https://doi.org/10.1071/CP18105
Leite, R.C., Santos, A.C., Santos, J.G., Leite, R.C., Oliveira, L.B.T., & Hungria, M. Mitigation of Mombasa Grass (Megathyrsus maximus) dependence on nitrogen fertilization as function of inoculation with Azospirillum brasilense. Revista Brasileira de Ciência do Solo, 43:p.e0180234. 2019. DOI: https://doi.org/10.1590/18069657rbcs20180234
Duarte, C.F.D., Cecato, U., Hungria, M., Fernandes, H.J., Biserra, T.T., Galbeiro, S., Toniato, A.K.B., & Silva, D.R. Morphogenetic and structural characteristics of Urochloa species under inoculation with plant-growth-promoting bacteria and nitrogen fertilisation. Crop and Pasture Science, 71(1):82-89. 2020. DOI: https://doi.org/10.1071/CP18455
MAPA (Ministério da Agricultura, Pecuária e Abastecimento). Instrução Normativa no. 13, de 24 de março de 2011. Brasília, Brazil: MAPA. 2011.
Hungria, M., Araujo, R.S. Relato da VI Reunião de laboratórios para recomendação de estirpes de Rhizobium e Bradyrhizobium. In: Microbiologia do Solo: Desafios para o Século XXI, eds. M. Hungria, E. L. Balota, A. Colozzi-Filho, and D. S. Andrade, 476-489. Londrina, Brazil: IAPAR/EMBRAPA-CNPSo. 1995.
Ribeiro, R.A., Ormeño-Orrillo, E., Dall’agnol, R.F., Graham, P.H., Martínez-Romero, E., & Hungria, M. Novel Rhizobium lineages isolated from root nodules of common bean (Phaseolus vulgaris L.) in Andean and Mesoamerican areas. Research in Microbiology, 164:740-748. 2013. DOI: https://doi.org/10.1016/j.resmic.2013.05.002
Klepa, M.S., Urquiaga, M.C.O., Somasegaran, P., Delamuta, J.R.M., Ribeiro, R.A., & Hungria, M. Bradyrhizobium niftali sp. nov., an effective nitrogen-fixing symbiont of partridge pea [Chamaecrista fasciculata (Michx.) Greene], a native caesalpinioid legume broadly distributed in USA. International Journal of Systematic and Evolutionary Microbiology, 69:3448-3459. 2019. DOI: https://doi.org/10.1099/ijsem.0.003640
Delamuta, J.R.M., Menna, P., Ribeiro, R.A., & Hungria, M. Phylogenies of symbiotic genes of Bradyrhizobium symbionts of legumes of economic and environmental importance in Brazil support the definition of the new symbiovars pachyrhizi and sojae. Systematic and Applied Microbiology, 40(5):254–265. 2017. DOI: https://doi.org/10.1016/j.syapm.2017.04.005
Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5):1792–1797. 2004. DOI: https://doi.org/10.1093/nar/gkh340
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12):2725–2729. 2013. DOI: https://doi.org/10.1093/molbev/mst197
Felsenstein, J. Evolutionary trees from DNA sequences: a Maximum Likelihood approach. Journal of Molecular Evolution, 17:368–376. 1981. DOI: https://doi.org/10.1007/BF01734359
Gouy, M., Guindon, S., & Gascuel, O. Sea view version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2):221–224. 2010. DOI: https://doi.org/10.1093/molbev/msp259
Chibeba, A.M., Kyei-Boahen, S., Guimarães, M.F., Nogueira, M.A., & Hungria, M. Isolation, characterization and selection of indigenous Bradyrhizobium strains with outstanding symbiotic performance to increase soybean yields in Mozambique. Agriculture, Ecosystems and Environment, 246:291-305. 2017. DOI: https://doi.org/10.1016/j.agee.2017.06.017
Sneath, P., Sokal, R. Numerical Taxonomy: The Principles and Practice of Numerical Classification. San Francisco, USA: W. H. Freeman & Co. 573 p. 1973.
Jaccard, P. The distribution of flora in the alpine zone. New Phytologist, 11(2):37–50. 1912. DOI: https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
Hungria, M., O’Hara, G.W., Zilli, J.E., Araujo, R.S., Deaker, R., & Howieson, J. G. Isolation and growth of rhizobia. In: Working with Rhizobia, eds. J. G. Howieson, and M. J. Dilworth, 39-60. Canberra, Australia: Australian Center for International Agricultural Research (ACIAR). 2016.
Fukami, J., Abrante, J.L.F., Del Cerro, P., Nogueira, M.A., Megías, M., Ollero, F.J., & Hungria, M. Revealing different strategies of quorum sensing in Azospirillum brasilense strains Ab-V5 and Ab-V6. Archives of Microbiology, 200(1):47–56. 2018.b DOI: https://doi.org/10.1007/s00203-017-1422-x
Raij B. van, Andrade, J.C., Cantarella, H., & Quaggio, J.A. Chemical Analysis for Fertility Evaluation of Soil Tropical [Análise Química para Avaliação da Fertilidade de Solos Tropicais]. Campinas, Brazil: Instituto Agronômico de Campinas. 2001.
Werner, J.C., Paulino, V.T., Cantarella, H., Andrade, N.O., & Quaggio, J.A. Forajes [Forrageiras] In Fertilization and Liming Recommendation for the São Paulo State [Recomendação de Adubação e Calagem para o Estado de São Paulo], eds. B. Raij, H Cantarella, J. A Quaggio, and A. M. Furlani. 245–258. Campinas, Brazil: Instituto Agronômico de Campinas. 1997.
Allen, S.E., Terman, G.L., Clements, L.B., & Mikkelsen, R. Greenhouse Techniques For Soil-Plant Fertilizer Research. Muscle Shoals. USA: Tennessee Valley Authority, 1976.
Hungria, M., Araujo, R.S. Manual of Methods Employed in Agricultural Microbiology Studies [Manual de Métodos Empregados em Estudos de Microbiologia Agrícola]. Brasília, Brazil: EMBRAPA-SPI. 1994.
Goering, H.K.; Van Soest, P.J. Forage fiber analyses: apparatus, reagents, procedures, and some applications. Agricultural Research Service, US Department of Agriculture, (1970).
Holden, L.A. Comparison of methods of in vitro dry matter digestibility for ten feeds. Journal of dairy science, 82(8):1791-1794, (1999). DOI: https://doi.org/10.3168/jds.S0022-0302(99)75409-3
Pimentel-Gomes, F., Garcia, C.H. Estatística aplicada a experimentos agronômicos e florestais: exposição com exemplos e orientações para uso de aplicativos. Piracicaba: FEALQ. (2002).
Ribeiro, R.A., Barcellos, F.G., Thompson, F.L., & Hungria, M. Multilocus sequence analysis of Brazilian Rhizobium strains microsymbionts of common beans (Phaseolus vulgaris) reveals unexpected taxonomic diversity. Research in Microbiology, 160(4)297-306. 2009. DOI: https://doi.org/10.1016/j.resmic.2009.03.009
Menna, P., Pereira, A.A., Bangel, E.V., & Hungria, M. Rep-PCR of tropical rhizobia for strain fingerprinting, biodiversity appraisal and as a taxonomic and phylogenetic tool. Symbiosis, 48(1-3):120-130. 2009. DOI: https://doi.org/10.1007/BF03179991
MAPA (Ministério da Agricultura, Pecuária e Abastecimento). Instrução Normativa no. 30, , de 12 de novembro de 2010. Brasília, Brazil: MAPA. 2010.
Biondi, E., Pilli, E., Giuntini, E., Roumiantseva, M.L., Andronov, E.E., Onichtchouk, O.P., Kurchak, O.N., Simarov, B.V., Dzyubenko, N.I., Mengoni, A., & Bazzicalupo, M. Genetic relationship of Sinorhizobium meliloti and Sinorhizobium medicae strains isolated from Caucasian region. FEMS Microbiology Letters, 220:207–213. 2003. DOI: https://doi.org/10.1016/S0378-1097(03)00098-3
Elboutahiri N., Thami-Alami, I., & Udupa, S.M. Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco. BMC Microbiology, 10:15. 2010. DOI: https://doi.org/10.1186/1471-2180-10-15
Moreira, A., Moraes, L.A.C., & Fageria, N.K. Zinc and amino-acids on the yield and nutritional state of alfalfa grown in the tropical soil. Journal of Plant Nutrition, 38:780–794. 2015. DOI: https://doi.org/10.1080/01904167.2014.944710
Nuernberg, N.J., Milan, P.A., & Silveira, C.A.M. Alfalfa Production Manual [Manual de Produção de Alfafa]. Florianópolis, Brazil: EMPASC. 1990.
Itzigsohn, R., Kapulnik, Y., Okon, Y., & Dovrat, A. Physiological and morphological aspects of interactions between Rhizobium meliloti and alfalfa (Medicago sativa) in association with Azospirillum brasilense. Canadian Journal of Microbiology, 39:610–615. 1993. DOI: https://doi.org/10.1139/m93-088
Burdman, S., Volpin, H., Kigel, J., Kapulnik, Y., & Okon, Y. Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Applied and Environmental Microbiology, 62:3030–3033. 1996. DOI: https://doi.org/10.1128/aem.62.8.3030-3033.1996
Long, S.R. Rhizobium-legume nodulation: life together in the underground. Cell, 56:203–214. 1989. DOI: https://doi.org/10.1016/0092-8674(89)90893-3
Yahalom, E., Okon, Y., & Dovrat, A. Azospirillum effects on susceptibility to Rhizobium nodulation and on nitrogen fixation of several forge legumes. Canadian Journal of Microbiology, 33:510–514. 1987. DOI: https://doi.org/10.1139/m87-085
Niewiadomska, A., Swerdrzynska, D. Effect of the co-inoculation of lucerne (Medicago sativa L.) with Sinorhyzobium meliloti and Herbaspirillum frisigense in relation to the interations between bacterial strains. Archives of Environmental Protection, 37(4):37–48. 2011.
Xavier, D.F., Gomes, F.T., Lédo, F.J.S., & Pereira, A.V. Efficiency of rhizobia inoculants on nodulation of alfalfa in a "Cerrado" soil. Revista Brasileira de Zootecnia, 34(3):781–785. 2005. DOI: https://doi.org/10.1590/S1516-35982005000300009
Moreira, A., Malavolta, E., Moraes, L.A.C., & Heinrichs, R. Sources and Rates of Phosphorus on Nitrogen and Micronutrients Levels in Alfalfa and Centrosema. Boletim de Indústria Animal, 59(2):157–165. 2002.
Pietrzak, S. Estimation of nitrogen fixed symbiotically by legume plants. Woda Środowisko Obszary Wiejskie, 11(3):197–207. 2011.
Symanowicz, B., Skorupka, W. Effect of mineral fertilization on nitrogenase activity, yield, nitrogen content and uptake with alfalfa (Medicago sativa L.) yield. Journal of Elementology, 24(1):181–191. 2019.
Prasad, H., Chandra, R. Growth pattern of urdbean Rhizobium sp. with PSB and PGPR in consortia. Journal of the Indian Society of Soil Science, 51:76–78. 2003.
Pandey, P., Maheswari, D.K. Two-species microbial consortium for growth promotion of Cajanus cajan. Current Science, 92:1137–1142. 2007.
Biswas, J.C., Ladha, J.K., & Dazzo, F.B. Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Science Society of America Journal, 64:1644–1650. 2000. DOI: https://doi.org/10.2136/sssaj2000.6451644x
Moreira, A., Evangelista, A.R., & Rodrigues, G.H.S. The alfalfa cultivars evaluation in the region of Lavras, Minas Gerais, Brazil. Pesquisa Agropecuária Brasileira, 31(6):407–411. 1996.
Gashaw, M. Review on biomass yield dynamics and nutritional quality of alfalfa (Medicago sativa). Journal of Harmonized Research in Applied Science, 3(4):241–251. 2015.
Delic, D., Stajkivic, O., Milieie, B., Kuzmanovic, D., Rasulue, N., Radovic, J., & Tomic, Z. Effects of diferente strains of Sinorhizobium meliloti on alfalfa (Medicago sativa L.) biomass yield. Biotechnology in Animal Husbandry, 23(5-6):601-607, 2007. DOI: https://doi.org/10.2298/BAH0701601D
Silva, D.J., Queiroz, A.C. Análise de alimentos: métodos químicos e biológicos. 3.ed. Viçosa, MG: Universidade Federal de Viçosa, 235p. 2002.
Bernardi, A.C.C., Cardoso, R.D., Mota, E.P., & Ferreira, R.P. Yield, nutritional status and quality of alfalfa under grazing and weed occurrence in response to liming, gypsum and potassium fertilization. Boletim de Indústria Animal, 70(1):67–74. 2013. DOI: https://doi.org/10.17523/bia.v70n1p67
Monteiro, A.L.G., Costa, C., & Silveira, A.C. Dry matter production and seasonal distribution and chemical composition of alfalfa cultivates (Medicago sativa L.). Revista Brasileira de Zootecnia, 27:868–874. 1998.
Conrad, H.R., Pratt, A.D., & Hibbs, J.W. Regulation of feed intake in dairy cows. I. Change in importance of physical and physiological factors with increasing digestibility. Journal of Dairy Science, 47:54–62. 1964. DOI: https://doi.org/10.3168/jds.S0022-0302(64)88581-7
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Cecilio Viega Soares Filho, Silva, L.A., Boregio, J.S., Hungria, M., Moreira, A., Nogueira, M.A.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2020-05-03
Published 2020-05-01
Most read articles by the same author(s)
- DUARTE, A. N. M., SOARES FILHO, C. V., TEIXEIRA FILHO, M. C. M., CARVALHO, C. L. M. de, HUNGRIA, M., NOGUEIRA, M. A., VALVANO, I. M., ISHIY, A. G., Inoculation with plant growth-promoting bacteria and reduction of nitrogen fertilizer in herbage accumulation and nutritional value of Mavuno grass , International Journal for Innovation Education and Research: Vol. 9 No. 3 (2021): International Journal for Innovation Education and Research
- Gilmar Cotrin de Lima, Mariangela Hungria, Marco Antonio Nogueira, Marcelo Carvalho Minhoto Teixeira Filho, Adônis Moreira, Reges Heinrichs, Cecilio Viega Soares Filho, Yield, yield components and nutrients uptake in Zuri Guinea grass inoculated with plant growth-promoting bacteria , International Journal for Innovation Education and Research: Vol. 8 No. 4 (2020): International Journal for Innovation Education and Research
- Cecilio Viega Soares Filho, Caroline Lopes Monteiro de Carvalho, Mariangela Hungria, Marco Antônio Nogueira, Adônis Moreira, Amário Nuno Meireles Duarte, Nitrogen in Shoots, Number of Tillers, Biomass Yield and Nutritive Value of Zuri Guinea Grass Inoculated with Plant-Growth Promoting Bacteria , International Journal for Innovation Education and Research: Vol. 8 No. 5 (2020): International Journal for Innovation Education and Research
- Artur Roque Domingues Barreiros, Ulysses Cecato, Camila Fernandes Domingues Duarte, Mariangela Hungria, Thiago Trento Biserra, Diogo Rodrigues da Silva, Divaney Mamédio, Renan Sanches, Henrique Jorge Fernandes, Forage Mass, Tillering, Nutritive Value and Root System of Ruzigrass Inoculated with Plant Growth Promoting Bacteria Associated with Doses of N-Fertilizer , International Journal for Innovation Education and Research: Vol. 8 No. 10 (2020): International Journal for Innovation Education and Research