Forage Mass, Tillering, Nutritive Value and Root System of Ruzigrass Inoculated with Plant Growth Promoting Bacteria Associated with Doses of N-Fertilizer
DOI:
https://doi.org/10.31686/ijier.vol8.iss10.2634Keywords:
growth promotion, plant biomass, plant growth hormonesAbstract
The aim of this study was evaluating the effect of the inoculation of plant growth promoting bacteria (PGPB) in forage mass, tillering, nutritive value and root system of ruzigrass (Urochloa ruziziensis (R. Germ. & Evrard) Crins (syn. of Brachiaria ruziziensis) associated with doses of N-fertilizer. The bacteria inoculated were Azospirillum brasilense Ab-V5, Pseudomonas fluorescens CCTB03 and Pantoea ananatis AMG 521, plus the control treatment (non-inoculated), associated with doses of N-fertilizer (0, 50 and 100 kg N ha-1). The experiment was performed in a randomized block design, in a 4x3 factorial scheme, with four replicates, totaling 48 plots (12 m2). There were no effects of the PGPB and the use of N-fertilizer on the leaf blade, stem+sheath, forage mass, daily and yearly accumulation of forage mass. The PGPB did not have influence on the density of tillers. The doses of 50 and 100 kg of N ha-1 increased the amount of tillers. The AMG 521 strain associated with N-fertilizer provided heavier tillers. There was no effect of the PGPB on crude protein (CP), neutral detergent fiber (NDF), as well as acid detergent fiber (ADF), and in vitro digestibility of the dry matter (IVDDM). The use of 100 kg of N ha-1 contributed to an increase in CP and a decrease in NDF. The AMG 521 strain contributed to a smaller diameter of the root. Strains CCTB03 and AMG 521 demonstrated a smaller area, length and root density when associated with the dose of 50kg of N ha-1. In general, the PGPB were not efficient in promoting productive increments in ruzigrass.
Downloads
References
Aguirre, P. F., Olivo, C. J., Rodrigues, P. F., Falk, D. R., Adams, C. B., & Schiafino, H. P. (2018). Forage yield of Coastcross-1 pastures inoculated with Azospirillum brasilense. Acta Scientiarum. Animal Sciences, 40, e36392. https://doi.org/10.4025/actascianimsci.v40i1.36392 DOI: https://doi.org/10.4025/actascianimsci.v40i0.36392
AOAC. (1990). Official Methods of Analysis Association of Official Analytical Chemists. Arlington, Virginia: AOAC International.
Cassán, F., & Diaz-Zorita, M. (2016). Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology and Biochemistry, 103, 117-130. http://dx.doi.org/10.1016/j.soilbio.2016.08.020 DOI: https://doi.org/10.1016/j.soilbio.2016.08.020
Cecato, U., Galbeiro, S., Paris, W., Soares Filho, C. V., Teixeira, S. (2011). Uso de nitrogênio em pastagens. In U. Cecato, M. A. A. F. Barbosa, S. Galbeiro, W. Paris, F. C. A. R. Grecco, C. S. Viegas, S. Teixeira (Eds.), Simpósio de Produção Animal a Pasto, (pp. 117-162). Maringá: Sthampa.
Dobbelaere, S., & Okon, Y. (2007). The plant growth-promoting effect and plant responses. In C. Elmerich, W. E. Newton (Eds.), Associative and Endophytic Nitrogen-Fixing Bacteria and Cyanobacterial Associations, (pp. 145-170). Springer, Dordrecht, The Netherlands. DOI: https://doi.org/10.1007/1-4020-3546-2_7
Döbereiner, J., & Ruschel, A. P. (1958). Uma nova espécie de Beijerinckia. Revista de Biologia, 1, 260-272.
Duarte, C. F. D., Cecato, U., Hungria, M., Fernandes, H. J., Biserra, T. T., Mamédio, D., Galbeiro, S., & Nogueira, M. A. (2020). Inoculação de bactérias promotoras do crescimento vegetal em Urochloa Ruziziensis. Research, Society and Development, 9, eXX. http://dx.doi.org/10.33448/rsd-v9i8.XX DOI: https://doi.org/10.33448/rsd-v9i8.5978
Freitas, I. C. V., & Rodrigues, M. B. (2010). Fixação biológica do nitrogênio na cultura do milho. Agropecuária Técnica, 31, 143-154. https://periodicos.ufpb.br/index.php/at/article/download/4515/4636/
Fukami, J., Cerezini, P., & Hungria, M. (2018). Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, 8, 73. https://doi.org/10.1186/s13568-018-0608-1 DOI: https://doi.org/10.1186/s13568-018-0608-1
Fukami, J., Ollero, F. J., Megías, M., Hungria, M. (2017). Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express, 7, 153. https://doi.org/10.1186/s13568-017-0453-7 DOI: https://doi.org/10.1186/s13568-017-0453-7
Goering, H. K., & Van Soest, P. J. (1970). Forage fiber analyses: apparatus, reagents, procedures, and some applications (No. 379). Disponível em https://books.google.com.br/books?id=yn8wAAAAYAAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological research, 206, 131-140. https://doi.org/10.1016/j.micres.2017.08.016 DOI: https://doi.org/10.1016/j.micres.2017.08.016
Guimarães, S. L., Silva, E. M. B., Polizel, A. C., & Campos, D. T. S. (2011). Produção de capim marandu inoculado com Azospirillum spp. Enciclopédia Biosfera, Centro Científico Conhecer, 7, 816-825.
Holden, L. A. (1999). Comparison of methods of in vitro dry matter digestibility for ten feeds. Journal of dairy science, 82, 1791-1794. https://doi.org/10.3168/jds.S0022-0302(99)75409-3 DOI: https://doi.org/10.3168/jds.S0022-0302(99)75409-3
Hungria, M., Nogueira, M. A., & Araujo, R. S. (2016). Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: an environment-friendly component in the reclamation of degraded pastures in the tropics. Agriculture, Ecosystems & Environment, 221, 125-131. https://doi.org/10.1016/j.agee.2016.01.024 DOI: https://doi.org/10.1016/j.agee.2016.01.024
Kavamura, V. N., Santos, S. N., da Silva, J. L., Parma, M. M., Ávila, L. A., Visconti, A., Zucchi, T. D., Taketani, R. G., Andreote, F. D., & Melo, I. S. (2013). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological research, 168, 183-191. https://doi.org/10.1016/j.micres.2012.12.002 DOI: https://doi.org/10.1016/j.micres.2012.12.002
Kochar, M., & Srivastava, S. (2012). Surface colonization by Azospirillum brasilense SM in the indole‐3‐acetic acid dependent growth improvement of sorghum. Journal of basic microbiology, 52, 123-131. https://doi.org/10.1002/jobm.201100038 DOI: https://doi.org/10.1002/jobm.201100038
Leite, R. D. C., dos Santos, J. G., Silva, E. L., Alves, C. R., Hungria, M., Leite, R. D. C., dos Santos, A. C. (2018). Productivity increase, reduction of nitrogen fertiliser use and drought-stress mitigation by inoculation of Marandu grass (Urochloa brizantha) with Azospirillum brasilense. Crop and Pasture Science, 70, 61-67. https://doi.org/10.1071/CP18105 DOI: https://doi.org/10.1071/CP18105
Lopes, M. J. S., Dias Filho, M. B., dos Reis Castro, T. H., de Filippi, M. C. C., da Silva, & G. B. (2018). Effect of Pseudomonas fluorescens and Burkholderia pyrrocinia on the Growth Improvement and Physiological Responses in Brachiaria brizantha. American Journal of Plant Sciences, 9, 250-265. doi: 10.4236/ajps.2018.92021 DOI: https://doi.org/10.4236/ajps.2018.92021
Malavolta, E. (2006). Manual de nutrição mineral de plantas. Agronômica Ceres.
Mamédio, D., Cecato, U., Sanches, R., Silva, S. M. S., Silva, D. R., Rodrigues, V. O., Galbeiro, S., Barreiros, A. R. D., & Vicente, J. V. R. (2020). Do plant-growth promoting bacteria contribute to greater persistence of tropical pastures in water deficit? - A Review. Research, Society and Development 9, eXX. doi: http://dx.doi.org/10.33448/rsd-v9i8.XX DOI: https://doi.org/10.33448/rsd-v9i8.5756
Marschner, P., Solaiman, Z., & Rengel, Z. (2006). Rhizosphere properties of Poaceae genotypes under P-limiting conditions. Plant and Soil 283, 11-24. doi: 10.1007/s11104-005-8295-5 DOI: https://doi.org/10.1007/s11104-005-8295-5
Megías, E., Megías, M., Ollero, F. J., & Hungria, M. (2016). Draft genome sequence of Pantoea ananatis strain AMG521, a rice plant growth-promoting bacterial endophyte isolated from the Guadalquivir marshes in southern Spain. Genome Announcements 4, e01681-15. doi: 10.1128/genomeA.01681-15 DOI: https://doi.org/10.1128/genomeA.01681-15
Megías, E., Junior, F. B. R., Ribeiro, R. A., Ollero, F. J., Megías, M., & Hungria, M. (2017). Genome Sequence of Pantoea ananatis Strain AMG 501, a Plant Growth-Promoting Bacterium Isolated from Rice Leaves Grown in Paddies of Southern Spain. Genome Announcements, 5, e00848-17. doi: 10.1128/genomeA.00848-17 DOI: https://doi.org/10.1128/genomeA.00848-17
Moreira, F. M. D. S., Da Silva, K., Nóbrega, R. S. A., & De Carvalho, F. (2010). Bactérias diazotróficas associativas: diversidade, ecologia e potencial de aplicações. Comunicata Scientiae, 1, 74-99.
Palmer, M. A., Filoso, S., & Fanelli, R. M. (2014). From ecosystems to ecosystem services: Stream restoration as ecological engineering. Ecological Engineering, 65, 62-70. https://doi.org/10.1016/j.ecoleng.2013.07.059 DOI: https://doi.org/10.1016/j.ecoleng.2013.07.059
Ribeiro, O. L., Cecato, U., Rodrigues, A. M., Faveri, J. C., Jobim, C. C., & Lugão, S. M. B. (2011). Biomassa radicular e reservas orgânicas em Coastcross consorciada ou não com" Arachis pintoi", com e sem nitrogênio, sob pastejo. Revista Brasileira de Saúde e Produção Animal, 12, 318-328.
Rosolem, C. A., Ritz, K., Cantarella, H., Galdos, M. V., Hawkesford, M. J., Whalley, W. R., & Mooney, S. J. (2017). Enhanced plant rooting and crop system management for improved N use efficiency. Advances in agronomy, 146, 205-239. https://doi.org/10.1016/bs.agron.2017.07.002 DOI: https://doi.org/10.1016/bs.agron.2017.07.002
Sanches, R. (2017). Intensidade de pastejo e desempenho radicular do capim convert HD364 na relação com a resistência do solo à penetração. Dissertação de Mestrado. UEM: Universidade Estadual de Maringá.
Santos, H. G., Jacomine, P. K. T., Dos Anjos, L. H. C., De Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa.
Sarathambal, C., Ilamurugu, K., Balachandar, D., Chinnadurai, C., & Gharde, Y. (2015). Characterization and crop production efficiency of diazotrophic isolates from the rhizosphere of semi-arid tropical grasses of India. Applied Soil Ecology, 87, 1-10. https://doi.org/10.1016/j.apsoil.2014.11.004 DOI: https://doi.org/10.1016/j.apsoil.2014.11.004
Sbrissia, A. F., & Silva, S. C. D. (2008). Compensação tamanho/densidade populacional de perfilhos em pastos de capim-marandu. Revista Brasileira de Zootecnia, 37, 35-47. https://doi.org/10.1590/S1516-35982008000100005 DOI: https://doi.org/10.1590/S1516-35982008000100005
Soares Filho, C. V., Cecato, U., Ribeiro, O. L., Cruz Roma, C. F. D., Jobim, C. C., Beloni, T., & Venturoli Perri, S. H. (2013). Root system and root and stem base organic reserves of pasture Tanzania grass fertilizer with nitrogen under grazing. Semina: Ciências Agrárias, 34, 2415-2426. doi: 10.5433/1679-0359.2013v34n5p2415 DOI: https://doi.org/10.5433/1679-0359.2013v34n5p2415
Spaepen, S. (2015). Plant hormones produced by microbes. In: Lugtenberg B. (eds) Principles of Plant-Microbe Interactions (pp. 247-256). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-08575-3_26
Sureshbabu, K., Amaresan, N., & Kumar, K. (2016). Amazing multiple function properties of plant growth promoting rhizobacteria in the rhizosphere soil. International Journal of Current Microbiology and Applied Sciences, 5, 661-683. http://dx.doi.org/10.20546/ijcmas.2016.502.074 DOI: https://doi.org/10.20546/ijcmas.2016.502.074
Tilley, J. M. A., & Terry, R. A. (1963). A two‐stage technique for the in vitro digestion of forage crops. Grass and forage science, 18, 104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x DOI: https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
Van Groenigen, J. W., Huygens, D., Boeckx P., Kuyper, T. W., Lubbers, I. M., Rütting, T., & Groffman, P. M. (2015). The soil N cycle: new insights and key challenges. Soil, 1, 235–256. https://biblio.ugent.be/publication/6994395/file/6994403 DOI: https://doi.org/10.5194/soil-1-235-2015
Van Soest, P. J., Robertson, J. B., Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2 DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Verbon, E. H., & Liberman, L. M. (2016). Beneficial microbes affect endogenous mechanisms controlling root development. Trends in plant science, 21, 218-229. https://doi.org/10.1016/j.tplants.2016.01.013 DOI: https://doi.org/10.1016/j.tplants.2016.01.013
Wolfinger, R. (1993). Covariance structure selection in general mixed models. Communications in statistics-Simulation and computation, 22, 1079-1106. https://doi.org/10.1080/03610919308813143 DOI: https://doi.org/10.1080/03610919308813143
Zhu, S., Vivanco, J. M., & Manter, D. K. (2016). Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Applied Soil Ecology, 107, 324-333. https://doi.org/10.1016/j.apsoil.2016.07.009 DOI: https://doi.org/10.1016/j.apsoil.2016.07.009
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Artur Roque Domingues Barreiros, Ulysses Cecato, Camila Fernandes Domingues Duarte, Mariangela Hungria, Thiago Trento Biserra, Diogo Rodrigues da Silva, Divaney Mamédio, Renan Sanches, Henrique Jorge Fernandes

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2020-08-28
Published 2020-10-01