Learning Analytics in a Virtual Learning Environment: the challenge of mapping socio-affective scenarios
DOI:
https://doi.org/10.31686/ijier.vol8.iss6.2389Keywords:
Socio-affective, Virtual Learning Environment, Learning AnalyticsAbstract
Virtual courses are increasingly being offered in Brazil, making it imperative to develop technological resources and research to help in the teaching and learning processes in this modality. One approach is to analyze student's socio-affective profile in Virtual Learning Environments (VLE). The co-operative learning network (ROODA) VLE has two features called the Social Map (SM) and Affective Map (AM), which can both contribute to the visualization of data regarding social interaction indicators and students' moods in the environment. The SM presents the social relations formed through indicators, which are the absence; collaboration; the distance from the class; evasion; informal groups and popularity, enabling the identification of the participating subjects in the form of sociograms. The AM identifies students' moods graphically through indicators, which are excitement, discouragement, satisfaction, and dissatisfaction. Thus, this article aims to map the possible recurrent socio-affective scenarios in a VLE using Learning Analytics (LA). LA is defined as measurement, collection, analysis, and reporting of data about students and their contexts to understand as well as optimize learning and the environments in which it occurs. It can also contribute to the understanding of student's learning profile, based on social and affective aspects, thus allowing the teacher to develop pedagogical strategies consistent with the needs of each subject. The importance of integrating the possible social and affective scenarios was verified using LA, making it possible to deepen the comprehension of the subjective and qualitative questions regarding the students' interactions in the VLE. In this study, the scenarios are understood as the intersection between the Affective Map and Social Map indicators identified in a VLE. It has both a qualitative and quantitative approach. The choice is qualitatively justified because the research object involves social and affective phenomena that were subjectively expressed in texts and social interactions manifested in the ROODA VLE. It is quantitatively justified by the need to measure the mapping of socio-affective indicators through social parameters and moods applying LA. The subjects were undergraduate students who participated in distance learning courses at a Brazilian public university that used the ROODA VLE in the second semester of 2019. Data were collected from social and affective maps to identify if there was a relationship between them. As a result, based on the existing indicators of social interactions and moods, the socio-affective indicators were created using LA in order to analyze the students’ behavior in relation to the forms of interaction and communication that occur in the ROODA VLE.
References
ABED. 2018. Associação Brasileira de Educação a Distância. Informações do Anuário Brasileiro Estatístico de Educação Aberta e a Distância (Abraead/2017). Recuperado em 05 dezembro, 2018, de <http://www.abed.org.br/site/pt/midiateca/noticias_ead/1526/2018/04qualidade_na_educacao_superior_a_distancia_no_brasil_onde_estamos,_para_onde_vamos>.
Kalyana Monalyza Fernandes Câmara. 2016. Perfil dos alunos do curso de Pedagogia EaD do polo de Macau da UFRN: desafios, vantagens e sucessos da aprendizagem (Bachelor's thesis, Universidade Federal do Rio Grande do Norte).
José Manuel Moran and José Armando Valente. 2015. Educação a distância. Summus Editorial, São Paulo, BR.
Jean Piaget. 1973. As operações lógicas e a vida social. Forense, Rio de Janeiro, BR.
Jean Piaget. 2014. Relações entre a afetividade e a inteligência no desenvolvimento mental da criança. Wak, Rio de Janeiro, BR.
Jean-Marie Dolle. 1993. Para além de Freud e Piaget: referenciais para novas perspectivas em psicologia. Vozes, Petrópolis, BR.
António Damásio. 2012. O erro de Descartes: emoção, razão e o cérebro humano. Editora Companhia das Letras, São Paulo, BR.
Carla Barvinski, Gislaine Ferreira R. Madureira, Leticia R. Machado, Magalí Teresinha Longhi and Patricia Alejandra Behar. 2019. Construction of a Socio-affective Profile Model of Students in a Virtual Learning Environment. In Smart Education and e-Learning, Springer, Singapore, pp. 159-168. DOI: https://doi.org/10.1007/978-981-13-8260-4_15
Ryan Shaun Baker and Paul Salvador Inventado. 2014. Educational data mining and learning analytics. Learning analytics. Springer, New York, NY, pp. 61-75. DOI: https://doi.org/10.1007/978-1-4614-3305-7_4
SoLAR. 2019. Society for Learning Analytics Research (SoLAR). Recuperado em 15 abril, 2019, https://solaresearch.org/about/.
Pedrina Célia Brasil, Tainá Jesus Medeiros and Isabel Dillmann Nunes. 2018. Uma Revisão Sistemática Sobre o Uso de Learning Analytics em Ambientes Virtuais de Aprendizagem Brasileiros. In III Congresso sobre Tecnologias na Educação (Ctrl + E), Fortaleza, pp. 371-380.
Luciano Henrique Gomes de Almeida and Edna Gusmão de Góes Brennand. 2016. Learning Analytics em ambiente virtual de aprendizagem Moodle: um estudo de caso em componentes curriculares para cursos semipresenciais. In Gestão & Aprendizagem. Paraíba, 4, 2, pp. 76-93.
Patricia Alejandra Behar. 2019. Recomendação Pedagógica em Educação a Distância (1 ed.). Penso Editora, Porto Alegre, BR.
Magalí Teresinha Longhi. 2011. Mapeamento de aspectos afetivos em um ambiente virtual de aprendizagem. 2011. 273f. Tese de Doutorado (Doutorado em Informática na Educação), Centro Interdisciplinar de Informática na Educação. Universidade Federal do Rio Grande do Sul, Porto Alegre.
Jacob Levy Moreno, García Bouza and Saúl Karsz. 1972. Fundamentos de la sociometría. Paidós, Buenos Aires, ARG.
Carla Barvinski, Ana Carolina Ribeiro Ribeiro, Magalí Longhi and Patricia Alejandra Behar. 2017. Proposta de Modelo Socioafetivo de Aluno para a Recomendação de Estratégias Pedagógicas. In Brazilian Symposium on Computers in Education, Recife, pp. 1637-1646. DOI: 10.5753/cbie.sbie.2017.1637. DOI: https://doi.org/10.5753/cbie.sbie.2017.1637
George Siemens and Ryan S. de Baker. 2012. Learning analytics and educational data mining: towards communication and collaboration. In Proceedings of the 2nd international conference on learning analytics and knowledge (LAK’ 12). ACM Proceedings, pp. 252-254. DOI: https://doi.org/10.1145/2330601.2330661. DOI: https://doi.org/10.1145/2330601.2330661
Barbara Moissa, Isabela Gasparini and Avanilde Kemczinski. 2015. Educational Data Mining versus Learning Analytics: estamos reinventando a roda? Um mapeamento sistemático. In Brazilian Symposium on Computers in Education, pp. 1167-1176. DOI: ttp://dx.doi.org/10.5753/cbie.sbie.2015.1167. DOI: https://doi.org/10.5753/cbie.sbie.2015.1167
Barbara Moissa, Isabela Gasparini and Avanilde Kemczinski. 2014. Learning Analytics: um mapeamento sistemático. In Nuevas Ideas en Informática Educativa TISE, pp. 283-290.
Julian Moreno Cadavid and Andrés Pineda Corcho. 2018. A systematic literature review in Learning Analytics. In Workshops do Congresso Brasileiro de Informática na Educação, Rio de Janeiro, BR, pp. 429-438. DOI: http://dx.doi.org/10.5753/cbie.wcbie.2018.429. DOI: https://doi.org/10.5753/cbie.wcbie.2018.429
Anna Lea Dyckhoff, Dennis Zielke, Mareike Bültmann, Mohamed Amine Chatti and Ulrik Schroeder. 2012. Design and implementation of a learning analytics toolkit for teachers. In Jornal de Tecnologia e Sociedade Educacional, pp. 58-76.
Mohamed Amine Chatti, Anna Lea Dyckhoff, Ulrik Schroeder and Hendrik Thüs. 2013. A reference model for learning analytics. In International Journal of Technology Enhanced Learning, pp. 318-331. DOI: https://doi.org/10.1504/IJTEL.2012.051815
Robert K. Yin. 2015. Estudo de Caso: Planejamento e métodos. Bookman editora, Rio Grande do Sul, BR.
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Jacqueline Mayumi Akazaki, Leticia Rocha Machado, Ketia Kellen Araújo da Silva, Patricia Alejandra Behar
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2020-06-02
Published 2020-06-01
Most read articles by the same author(s)
- Jacqueline Mayumi Akazaki, Ester Morsoletto Poegere, Carla Bueno Sigal, Leticia Rocha Machado, Ketia Kellen Araújo da Silva, Patricia Alejandra Behar, Digital Fluency and the Construction of Pedagogical Strategies for Distance Learning , International Journal for Innovation Education and Research: Vol. 8 No. 12 (2020): International Journal for Innovation Education and Research
- Carla Adriana Barvinski, Gislaine Rossetti Madureira Ferreira, Leticia Rocha Machado, Magali Terezinha Longhi, Patricia Alejandra Behar, Ana Carolina Ribeiro, Affective and social aspects in Distance Education: the interdisciplinarity in focus , International Journal for Innovation Education and Research: Vol. 7 No. 6 (2019): International Journal for Innovation Education and Research
- Gislaine Rossetti Madureira Ferreira, Leticia Rocha Machado, Patricia Alejandra Behar, Social interactions in a virtual learning environment , International Journal for Innovation Education and Research: Vol. 6 No. 9 (2018): International Journal for Innovation Education and Research
- Tito Armando Rossi Filho, Aliane Loureiro Krassmann, Liane Margarida Rockenbach Tarouco, Patricia Alejandra Behar, An OWL-Based Ontology to Represent Interactions of Students in Educational Virtual Worlds , International Journal for Innovation Education and Research: Vol. 5 No. 7 (2017): International Journal for Innovation Education and Research