Precision Agriculture under a bibliometric view
DOI:
https://doi.org/10.31686/ijier.vol9.iss11.3533Keywords:
smart agriculture, scientific mapping, bibliometrics, systematic review, indicatorsAbstract
Precision Agriculture comprises techniques to monitor and control the differentiated application of agricultural inputs, considering the variability of cultivation areas over time to increase productivity and maintain environmental sustainability. Its current form considers the use of high-tech equipment to ensure food safety in the future and, therefore, constantly seeks research that produces innovations for the sector. However, there is a tremendous challenge in evaluating scientific development, given the large volume of information. This study aimed to carry out a scientific mapping of Precision Agriculture from a set of bibliometric techniques supported using the R bibliometrix tool. Based on this objective, the research questions were formulated and answered throughout qualitative quantitative and descriptive exploratory study. The data processing resulted 5,807 articles (13,705 authors) obtained from 1993 to 2020. Among the main results, there is constant growth in the number of publications, especially between 2016 and 2020; more significant concentration among countries, forming well-defined collaboration subnetworks through their institutions; presence of expressive central themes in the research with a high density of studies, such as the use of remote sensing combined with machine learning techniques, due to the growing trend in the amount of processed data.
References
Alkhateeb, F. (2010). BibTeX document generating using semantic web technologies. Proceedings of the 1st International Conference on Intelligent Semantic Web-Services and Applications - ISWSA ’10, 1–6. https://doi.org/10.1145/1874590.1874592 DOI: https://doi.org/10.1145/1874590.1874592
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007 DOI: https://doi.org/10.1016/j.joi.2017.08.007
Bassoi, L. H., Inamasu, R. Y., Bernardi, A. C. de C., Vaz, C. M. P., Speranza, E. A., & Cruvinel, P. E. (2020). Agricultura de precisão e agricultura digital. TECCOGS: Revista Digital de Tecnologias Cognitivas, 20, 17–36. https://doi.org/10.23925/1984-3585.2019i20p17-36 DOI: https://doi.org/10.23925/1984-3585.2019i20p17-36
Bradford, C. S. (1934). Sources of information on specific subjects. Engineering, 137, 85–86. https://doi.org/10.1177/016555158501000407 DOI: https://doi.org/10.1177/016555158501000407
Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons from applying the systematic literature review process within the software engineering domain. Journal of Systems and Software, 80(4), 571–583. https://doi.org/10.1016/j.jss.2006.07.009 DOI: https://doi.org/10.1016/j.jss.2006.07.009
Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22(1), 155–205. https://doi.org/10.1007/BF02019280 DOI: https://doi.org/10.1007/BF02019280
Cassettari, R. R. B., Pinto, A.-L., Rodrigues, R. S., & Santos, L. S. dos. (2015). Comparação da Lei de Zipf em conteúdos textuais e discursos orais. El Profesional de la Información, 24(2), 157. https://doi.org/10.3145/epi.2015.mar.09 DOI: https://doi.org/10.3145/epi.2015.mar.09
Cisternas, I., Velásquez, I., Caro, A., & Rodríguez, A. (2020). Systematic literature review of implementations of precision agriculture. Computers and Electronics in Agriculture, 176(July), 105626. https://doi.org/10.1016/j.compag.2020.105626 DOI: https://doi.org/10.1016/j.compag.2020.105626
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146–166. https://doi.org/10.1016/j.joi.2010.10.002 DOI: https://doi.org/10.1016/j.joi.2010.10.002
Coelho, J. P. C., & Silva, J. R. M. (2009). Agricultura de Precisão. Associação dos Jovens Agricultores de Portugal.
Dervis, H. (2019). Bibliometric Analysis using Bibliometrix an R Package. Journal of Scientometric Research, 8(3), 156–160. https://doi.org/10.5530/jscires.8.3.32 DOI: https://doi.org/10.5530/jscires.8.3.32
Diodato, V. P., & Gellatly, P. (2013). Dictionary of Bibliometrics. Routledge. https://doi.org/10.4324/9780203714133 DOI: https://doi.org/10.4324/9780203714133
Esfahani, H. J., Tavasoli, K., & Jabbarzadeh, A. (2019). Big data and social media: A scientometrics analysis. International Journal of Data and Network Science, 3(3), 145–164. https://doi.org/10.5267/j.ijdns.2019.2.007 DOI: https://doi.org/10.5267/j.ijdns.2019.2.007
Garfield, E. (2004). Historiographic Mapping of Knowledge Domains Literature. Journal of Information Science, 30(2), 119–145. https://doi.org/10.1177/0165551504042802 DOI: https://doi.org/10.1177/0165551504042802
Grácio, M. C. C. (2016). Acoplamento bibliográfico e análise de cocitação: revisão teórico-conceitual. Encontros Bibli: revista eletrônica de biblioteconomia e ciência da informação, 21(47), 82. https://doi.org/10.5007/1518-2924.2016v21n47p82 DOI: https://doi.org/10.5007/1518-2924.2016v21n47p82
Haboudane, D., Miller, J. R., Elizabeth, P., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352. https://doi.org/10.1016/j.rse.2003.12.013 DOI: https://doi.org/10.1016/j.rse.2003.12.013
Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426. https://doi.org/10.1016/S0034-4257(02)00018-4 DOI: https://doi.org/10.1016/S0034-4257(02)00018-4
Han, S., Goering, C. E., Cahn, M. D., & Hummel, J. W. (1993). A Robust Method for Estimating Soil Properties in Unsampled Cells. Transactions of the ASAE, 36(5), 1363–1368. https://doi.org/10.13031/2013.28471 DOI: https://doi.org/10.13031/2013.28471
International Society for Precision Agriculture. (2021). Precision Ag Definition. ISPA. https://www.ispag.org
Kent Shannon, D., Clay, D. E., & Sudduth, K. A. (2018). An Introduction to Precision Agriculture (p. 1–12). https://doi.org/10.2134/precisionagbasics.2016.0084 DOI: https://doi.org/10.2134/precisionagbasics.2016.0084
Lotka, A. J. (1926). The freq distrib of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317–323. DOI: https://doi.org/10.1073/pnas.12.5.323
Molin, J. P., Amaral, L. R., & Colaço, A. F. (2015). Agricultura de Precisão (1o ed). Oficina de Textos.
Peters, H. P. F., & Van Raan, A. F. J. (1991). Structuring scientific activities by co-author analysis. Scientometrics, 20(1), 235–255. https://doi.org/10.1007/BF02018157 DOI: https://doi.org/10.1007/BF02018157
Pinheiro, L. V. R. (1983). Lei de Bradford: uma reformulação conceitual. Ciência da Informação, 12(2), 59–80.
Potter, W. G. (1981). Lotka´s law revisited. Library Trends, 30(1), 21–39.
Prado, H. (2018). Precisão na agricultura. Revista Fonte: Tecnologia da Informação na Gestão Pública, 15(20), 48–46.
Precision Agriculture in the 21st Century. (1997). Precision Agriculture in the 21st Century. National Academies Press. https://doi.org/10.17226/5491 DOI: https://doi.org/10.17226/5491
Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4), 348. DOI: https://doi.org/10.1108/eb026482
Rodríguez-Soler, R., Uribe-Toril, J., & De Pablo Valenciano, J. (2020). Worldwide trends in the scientific production on rural depopulation, a bibliometric analysis using bibliometrix R-tool. Land Use Policy, 97, 104787. https://doi.org/10.1016/j.landusepol.2020.104787 DOI: https://doi.org/10.1016/j.landusepol.2020.104787
Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265–269. https://doi.org/10.1002/asi.4630240406 DOI: https://doi.org/10.1002/asi.4630240406
Urbizagástegui Alvarado, R. (2002). A Lei de Lotka na bibliometria brasileira. Ciência da Informação, 31(2), 14–20. https://doi.org/10.1590/S0100-19652002000200002 DOI: https://doi.org/10.1590/S0100-19652002000200002
Urbizagástegui Alvarado, R. (2008). A produtividade dos autores sobre a Lei de Lotka. Ciência da Informação, 37(2), 87–102. DOI: https://doi.org/10.1590/S0100-19652008000200007
Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1–2), 59–75. https://doi.org/10.1016/j.geoderma.2005.03.007 DOI: https://doi.org/10.1016/j.geoderma.2005.03.007
White, H. D., & Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for Information Science, 32(3), 163–171. https://doi.org/10.1002/asi.4630320302 DOI: https://doi.org/10.1002/asi.4630320302
Xie, S., Zhang, J., & Ho, Y.-S. (2008). Assessment of world aerosol research trends by bibliometric analysis. Scientometrics, 77(1), 113–130. https://doi.org/10.1007/s11192-007-1928-0 DOI: https://doi.org/10.1007/s11192-007-1928-0
Zhang, J., Yu, Q., Zheng, F., Long, C., Lu, Z., & Duan, Z. (2016). Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. Journal of the Association for Information Science and Technology, 67(4), 967–972. https://doi.org/10.1002/asi.23437 DOI: https://doi.org/10.1002/asi.23437
Zipf, G.-K. (1949). Human behavior and the principle of least effort. Addison-Wesley.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Wanderson de Vasconcelos Rodrigues da Silva, Renata Silva-Mann
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2021-11-03
Published 2021-11-01
Most read articles by the same author(s)
- Rafael Almendra, Daniel Silva, Tiago Silva, Suzana Russo, Allan Kout França, Renata Silva-Mann, Innovation and performance in brazilian football clubs , International Journal for Innovation Education and Research: Vol. 8 No. 5 (2020): International Journal for Innovation Education and Research
- Patricia Brandão Barbosa da Silva, Renata Silva-Mann, Cristiano Santos, Determinants of Companies Propensity to Patent , International Journal for Innovation Education and Research: Vol. 7 No. 7 (2019): International Journal for Innovation Education and Research