Perspectives of the use of sulforaphane in animal model of colorectal carcinogenesis in Brazil

a review

Authors

DOI:

https://doi.org/10.31686/ijier.vol7.iss12.2088

Keywords:

Sulforaphane, Colonic Neoplasms, Rats, Azoxymethane, Broccoli

Abstract

Colon cancer is a growing health problem in Brazil. According to data from the World Health Organization (WHO), colon cancer is among the top ten causes of mortality and morbidity in the world. Besides, the disease has a significant economic impact on the Brazilian public health system. Over the past five years, there has been an increased interest in use, isolation, characterization and determination of the biological actions of compounds such as broccoli. Experimental studies with genetically modified (GMOs) rats, mice, and rats using Sulforaphane have demonstrated their ability to prevent, delay and reverse pre-neoplastic lesions, improved survival, as well as acting on neoplastic cells with therapeutic action. Sulforaphane through activation of Nrf2 increases the activity of phase II enzymes such as glutathione S transferase (GST), which is involved in the elimination of xenobiotic compounds. Aberrant crypts are induced, in Wistar rats and mice, by genotoxic and non-genotoxic chemical compounds. Colon carcinogenesis is generally induced in rats and mice by two substances, 1,2-dimethylhydrazine (DMH) and azoxymethane (AOM). Azoxymethane is often used concerning DMH because it is more potent and requires few reactions for its activation. It is possible to conclude that Sulforaphane, through its various biological actions, presents efficiency in the prevention of colon cancer and significant potential for use in future experimental studies with genetically modified rats, mice, and rats.

Downloads

Download data is not yet available.

Author Biographies

  • César Augusto Sobrinho, Fellow Master degree, Postgraduate Program in Health and Development in the Midwest Region,

    UFMS, Campo Grande-MS, Brazil

  • Evair Moisés de Lima Santiago, Fellow medical undergraduate, Faculty of Medicine,

    UFMS, Campo Grande-MS, Brazil

  • Marcelo Barbosa Neves, Fellow Master degree, Postgraduate Program in Health and Development in the Midwest Region,

    UFMS, Campo Grande-MS, Brazil

  • Alessandra de Figueiredo Gonçalves, Fellow Master degree, Postgraduate Program in Health and Development in the Midwest Region,

    UFMS, Campo Grande-MS, Brazil

  • Eliza Miranda Ramos, Fellow Master degree, Postgraduate Program in Health and Development in the Midwest Region,

    UFMS, Campo Grande-MS, Brazil

  • Ricardo Dutra Aydos, Full Professor, Postgraduate Program in Health and Development in the Midwest Region,

    UFMS, Campo Grande-MS, Brazil

  • Rondon Ramalho, Full Professor, Postgraduate Program in Health and Development in the Midwest Region,

    UFMS, Campo Grande-MS, Brazil

References

[1]. BRASIL. Ministério da Saúde. Secretaria de Assistência à Saúde. Instituto Nacional de Câncer. Programa nacional de controle do câncer de colonrretal: documento de consenso. - Rio de Janeiro. INCA, 2018.
[2]. M.G.V. Gottlieb, D. Carvalho, R.H. Schneider, I.B.M. Cruz. Aspectos genéticos do envelhecimento e doenças associadas: uma complexa rede de interações entre genes e ambientes. Artigo Original. Rev. Bras. Geriatr. Gerontol. 2007. v.10. n.3. p. 273 – 283. http://www.scielo.br/pdf/rbgg/v10n3/1981-2256-rbgg-10-03-0273.pdf
[3]. C.N. Armah, M.H. Traka, J.R. Dainty, M. Defernez, A. Janssens, W. Leung, J.F. Doleman, J.F. Potter, and R.F. Mithen. A diet rich in high-glucoraphanin broccoli interacts with genotype to reduce discordance in plasma metabolite profiles by modulating mitochondrial function. Am J ClinNutr. 2013. v.98. n.3. p.712-722. DOI:10.3945/ajcn.113.065235
[4]. A. Bartolome, K. Mandap, K.J. David, F. Sevilla, J. Villanueva. SOS-red fluorescent protein (RFP) bioassay system for monitoring of antigen toxic activity in plant extracts. Biosensors & Bioelectronics. 2006. Volume 21, Issue 11, Pages 2114-2120. DOI: 10.1016/j.bios.2005.10.009
[5]. A.I. Amjad, R.A. Parikh, L.J. Appleman, E.R. Hahm, K. Singh, S.V. Singh. Broccoli-Derived Sulforaphane and Chemo prevention of Prostate Cancer: From Bench to Bedside. Curr Pharmacol Rep. 2015 Nov 1;1(6):382-390. DOI: 10.1007/s40495-015-0034-x
[6]. T.W. Kensler, P.A. Egner, S.A. Agyeman, K. Visvanathan, J.D. Groopman, J.G. Chen, T.Y. Chen, J.W. Fahey, P. Talalay. Keap1–Nrf2 Signaling: A Target for Cancer Prevention by Sulforaphane. Top Curr Chem. 2013. v.329. p.163–178. DOI: 10.1007/128_2012_339
[7]. P. SALES, B. PELEGRINI, M.C. GOERCH. Nutrigenomics: Definitions and Advances of this New Science. J NutrMetab. 2014. v.20. p.27-59. DOI: 10.1155/2014/202759
[8]. T.A. Shapiro, J.W. Fahey, K.L. Wade, K.K. Stephenson, P. Talalay. Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol. Biomarkers Prev. 2001. 10, 501–508. PMID: 11352861
[9]. S.A. Stopera, J.R. Davie, R.P. Bird. Colonic aberrant crypt foci are associated with increased expression of c-fos: the possible role of modified c-fos expression in pre-neoplastic lesions in colon cancer. Carcinogenesis. 1992;13(4):573-8. DOI: 10.1093/carcin/13.4.573
[10]. M. Traka, A.V. Gasper, A. Melchini, J.R. Bacon, P.W. Needs, V. Frost, A. Chantry, A.M.E. Jones, C.A. Ortori, D.A. Barrett, R.Y. Ball, R.D. Mills, and R.F. Mithen. Broccoli Consumption Interacts with GSTM1 to Perturb Oncogenic Signalling Pathways in the Prostate. PLoS ONE. 2008. v.3. n.7. e2568. DOI: 10.1371/journal.pone.0002568
[11]. R.S. TUMA. Epigenetic therapies move into new territory, but how exactly do they work? J Natl Cancer Inst. 2009. v.101. n.19. p.1300–1. DOI: 10.1093/jnci/djp342
[12]. D.C. MALTA, J.B. SILVA JÚNIOR. O plano de ações estratégicas para o enfrentamento das doenças crônicas não transmissíveis no Brasil e a definição das metas globais para o enfrentamento dessas doenças até 2025: uma revisão. Artigo de Revisão. Epidemiologia. Serv. Saúde, Brasília, DF. 2013. v.22. n. 1. p.151 – 164. http://dx.doi.org/10.5123/S1679-49742013000100016
[13]. D.C. Malta, M. Lenildo, R.R. do Prado, J.C. Escalante, M.I. Schimidt, B.B Duncan. Mortalidade por doenças crônicas não transmissíveis no Brasil e suas regiões, 2000 a 2011. Artigo Original. Epidemiol. Serv. Saúde, Brasília, DF. 2014. v. 23. n. 4. p. 599 – 608. http://dx.doi.org/10.5123/S1679-49742014000400002.
[14]. E.S. Fiala. Investigations into the metabolism and mode of action of the colon carcinogens 1,2-dimethylhydrazine and azoxymethane. Cancer. 1977. v.40. (5 Suppl). p.2436-45. DOI: 10.1002/1097-0142(197711)40:5+<2436::aid-cncr2820400908>3.0.co;2-u
[15]. R.H. Dashwood, M.C. Myzak, E. Ho. Dietary HDAC inhibitors: time to rethink weak ligands in cancer chemoprevention? Carcinogenesis. 2006. v.27. p.344–9. DOI: 10.1093/carcin/bgi253
[16]. K.M Camp, E. Trujillo. Position of the Academy of Nutrition and Dietetics: Nutritional Genomics. Journal of the Academy of Nutrition and Dietetics. 2014. v.114. n. 2. p. 299 – 312. DOI: 10.1016/j.jand.2013.12.006
[17]. B. Combourieu, L. Elfoul, A.M. Delort. Identification of new derivatives of sinigrin and glucotropaeolin produced by the human digestive microflora using (1) h-nmr spectroscopy analysis of in vitro incubations. Drug Metab. Dispos., 2001. v.29. p.1440–1445. PMID: 11602519
[18]. L. Elfoul, S. Rabot, N. Khelifa, A. Quinsac, A. Duguay, A. Rimbault. Formation of ally isothiocyanate from sinigrin in the digestive tract of rats mono-associated with a human colonic strain of Bacteroidesthetaiotaomicron. FEMS Microbiol. Lett. 2001. v.197. p.99–103. DOI: 10.1111/j.1574-6968.2001.tb10589.x
[19]. J.L. Fernández, J. Benito. Panorama actual de La Nutrigenómica: Esperanza o Realidad? Nutr.Clin. Diet. 2008. v. 28, n.3. p. – 38 – 47.
[20]. E. Fialho, F.S. Moreno, T.P. Ong. Nutrição no pós-genoma: fundamentos e aplicações de ferramentas ômicas. Revista de Nutrição. 2008. Campinas, SP, v.21. n. 6. p. 757 – 766. http://dx.doi.org/10.1590/S1415-52732008000600014.
[21]. T.M.M. Fujji, De R. Medeiros, R. Yamada. Nutrigenômica e nutrigenetica: importantes conceitos para a ciência da nutrição. Artigo de Revisão. Rev. Soc. Alimentação. Nutrição, São Paulo, SP. 2010. v.35, n.1, p.149 – 166, abr.
[22]. C.E. Guerrero-Beltrán, M. Calderón-Oliver, J. Pedraza-Chaverri, Y.I. Chirinho. Protective effect of sulforaphane against oxidative stress: Recent advances. Exp Toxicol Pathol. 2013. v.64. n.5. p.503– 508. DOI: 10.1016/j.etp.2010.11.005
[23]. M.G.V. Gottlieb, I.B.M. Cruz, L.C. Bodanese. Origem da syndrome metabólica: aspectos genético-evolutivos e nutricionais. Artigo de Revisão. Scientia. Médica. 2008. v.18. n.1. p.31 – 38.
[24]. M.C. Krul, C. Humblot, C. Philippe, M. Vermeulen, N.M. Van, R. Havenaar, S. Rabot. Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model. Carcinogenesis. 2002. v.23. p.1009–1016. DOI: 10.1093/carcin/23.6.1009
[25]. T.K. Lam, L. Gallicchio, K. Boyd, M. Shiels, E. Hammond, X. Tao, L. Chen, K.A. Robinson, L.E. Caulfield, J.G. Herman, E.Guallar, and A.J. Alberg. Cruciferous Vegetable Consumption and Lung Cancer Risk: A Systematic Review. Cancer Epidemiol Biomarkers Prev. 2009. v.18. n.1. p.184–195. DOI: 10.1158/1055-9965.EPI-08-0710
[26]. C.S.M. Luz, L.S. Sena, W.J.L. Fonseca, G.G, Terto e Sousa, B.S. Abreu, W.L. Fonseca, W.M.F. Rodrigues, L.A. Farias, K.R. dos Santos, SC.S. Júnior. Influências de interações entre gene-ambiente sobre doenças cardiovasculares e nutrição. Nucleus. 2015. v. 12. n. 2. p. 309-320. DOI: http://dx.doi.org/10.3738/1982.2278.1477
[27]. G.S. MACK. Epigenetic cancer therapy makes headway. J Natl Cancer Inst. 2006. v.98. p.1443–4. DOI: 10.1093/jnci/djj447
[28]. L.R. Meyer, A.S. Zweig, A.S Hinrichs, D. Karolchik, R.M. Kuhn, M. Wong, et al. The UCSC Genome Browser database: extensions and updates. Nucleic Acids Res. 2013. v.41. p.D64–9. DOI: 10.1093/nar/gks1048
[29]. M.A Parasramka, W.M. Dashwood, R. Wang, H.H. Saeed, D.E. Williams, E. Ho, and R.H. Dashwood. A role for low-abundance miRNAs in colon cancer: the miR-206/Krüppel-like factor 4 (KLF4) axis. Clin Epigenetics. 2012. v.4. p.16-25. DOI: 10.1186/1868-7083-4-16
[30]. H.J.E. Vargas, G.M.P. Camacho, P.D. Ramírez. Efectos de los nutrientes y compuestos bioactivos de los alimentos entejidos y células de cáncer humano: aproximación nutrigenómica. Rev Fac Med. 2013. v.61. n.3. p.293-300. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-00112013000300009&lng=en&nrm=iso&tlng=es
[31]. D.T.H. Verhoeven, H. Verhagen, R.A. Goldbohm, P.A. Van Den Bramdt, G. Van Poppe. A review of mechanisms underlying anticarcinogenicity by brassica vegetables. ChemBiol Interact. 1997. v.103. n.79-129.
[32]. A.J. Wilson, D.S. Byun, N. Popova, L.B. Murray, K. L'Italien, Y. Sowa, D. Arango, A. Velcich, L.H. Augenlicht, and J.M. Mariadason. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem. 2006. v.281. p.13548–58.
[33]. C. Zhang, Z.Y. Su, T.O. Khor, L. Shu, A.N. Kong.Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. BiochemPharmacol. 2013. v.85. p.1398-404.

Downloads

Published

2019-12-01

How to Cite

Augusto Sobrinho, C., de Lima Santiago, E. M., Barbosa Neves, M., de Figueiredo Gonçalves, A. ., Miranda Ramos, E. ., Dutra Aydos, R. ., & Ramalho, R. (2019). Perspectives of the use of sulforaphane in animal model of colorectal carcinogenesis in Brazil: a review. International Journal for Innovation Education and Research, 7(12), 421-427. https://doi.org/10.31686/ijier.vol7.iss12.2088

Most read articles by the same author(s)