Screening for antiviral activity of two purified saponin fractions of Quillaja spp. against Yellow Fever Virus and Chikungunya Virus

Authors

  • Eduardo Artur Troian Feevale University
  • Karoline Schallenberger Feevale University
  • Francini Pereira da Silva Feevale University
  • Gabriela Klein Dietrich Feevale University
  • Fernando Ferreira Chiesa Carbohydrates and Glycoconjugates Laboratory, Udelar, Montevideo, Uruguay
  • Cristina Olivaro Centro Universitario de Tacuarembó, Cenur Noreste, Udelar, Tacuarembó, Uruguay
  • Federico Wallace Centro Universitario de Tacuarembó, Cenur Noreste, Udelar, Tacuarembó, Uruguay
  • Juliane Fleck Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
  • Simone Verza Feevale University

DOI:

https://doi.org/10.31686/ijier.vol8.iss9.2615

Keywords:

Antiviral, Chikungunya virus, Quil-A®, Quillaja brasiliensis, saponins, Yellow Fever virus

Abstract

Yellow Fever Virus (YFV) and Chikungunya Virus (CHIV) are neglected reemerging pathogens that cause comorbidities worldwide. Since no antiviral drug is prescribed for those infections, there is a demand on researching compounds that inhibit viral replication. Saponins are amphiphilic compounds that already demonstrated in vitro activity against enveloped virus. Therefore, two purified saponin fractions from Quillaja spp. were evaluated regarding their antiviral potential against YFV and CHIKV. The cell line used in this study was VERO (African green monkey kidney cells) since it is permissive to the replication of both viruses. The antiviral activity of both saponins fractions was screened using the plaque reduction assay protocol. Although saponins did not inhibited YFV replication, they strongly inhibited CHIKV. To confirm the absence of antiviral activity of Quillaja saponins against YFV, the cytopathic effect inhibition assay was performed also. Further studies are required to determine the antiviral mechanisms involved in the CHIKV inhibition.

Downloads

Download data is not yet available.

Author Biographies

  • Eduardo Artur Troian, Feevale University

    Graduate Program in Virology

  • Karoline Schallenberger, Feevale University

    Graduate Program in Virology

  • Francini Pereira da Silva, Feevale University

    Graduate Program in Virology

  • Gabriela Klein Dietrich, Feevale University

    Institute of Health Sciences

  • Fernando Ferreira Chiesa, Carbohydrates and Glycoconjugates Laboratory, Udelar, Montevideo, Uruguay

    Organic Chemistry Department

  • Cristina Olivaro, Centro Universitario de Tacuarembó, Cenur Noreste, Udelar, Tacuarembó, Uruguay

    Espacio de Ciencia y Tecnología Química

  • Federico Wallace, Centro Universitario de Tacuarembó, Cenur Noreste, Udelar, Tacuarembó, Uruguay

    Espacio de Ciencia y Tecnología Química

  • Juliane Fleck, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil

    Graduate Program in Toxicology and Analytical Toxicology

  • Simone Verza, Feevale University

    Graduate Program in Virology

References

A.J. Wilson, L.E. Harrup, Reproducibility and relevance in insect-arbovirus infection studies, Curr. Opin. Insect Sci. 28 (2018) 105–112. https://doi.org/10.1016/j.cois.2018.05.007. DOI: https://doi.org/10.1016/j.cois.2018.05.007

A. Wilder-Smith, D.J. Gubler, S.C. Weaver, T.P. Monath, D.L. Heymann, T.W. Scott, Epidemic arboviral diseases: priorities for research and public health, Lancet Infect. Dis. 17 (2017) e101–e106. https://doi.org/10.1016/S1473-3099(16)30518-7. DOI: https://doi.org/10.1016/S1473-3099(16)30518-7

J.E. Staples, Yellow Fever: 100 Years of Discovery, JAMA. 300 (2008) 960. https://doi.org/10.1001/jama.300.8.960. DOI: https://doi.org/10.1001/jama.300.8.960

P.J. Bredenbeek, E.A. Kooi, B. Lindenbach, N. Huijkman, C.M. Rice, W.J.M. Spaan, A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication, J. Gen. Virol. 84 (2003) 1261–1268. https://doi.org/10.1099/vir.0.18860-0. DOI: https://doi.org/10.1099/vir.0.18860-0

T.R. Jorge, A.L.P. Mosimann, L. de Noronha, A. Maron, C.N. Duarte dos Santos, Isolation and characterization of a Brazilian strain of yellow fever virus from an epizootic outbreak in 2009, Acta Trop. 166 (2017) 114–120. https://doi.org/10.1016/j.actatropica.2016.09.030. DOI: https://doi.org/10.1016/j.actatropica.2016.09.030

A.D.T. Barrett, Yellow fever live attenuated vaccine: A very successful live attenuated vaccine but still we have problems controlling the disease, Vaccine. 35 (2017) 5951–5955. https://doi.org/10.1016/j.vaccine.2017.03.032. DOI: https://doi.org/10.1016/j.vaccine.2017.03.032

C.C. Pacca, R.E. Marques, J.W.P. Espindola, G.B.O.O. Filho, A.C.L. Leite, M.M. Teixeira, M.L. Nogueira, Thiosemicarbazones and Phthalyl-Thiazoles compounds exert antiviral activity against yellow fever virus and Saint Louis encephalitis virus, Biomed. Pharmacother. 87 (2017) 381–387. https://doi.org/10.1016/j.biopha.2016.12.112. DOI: https://doi.org/10.1016/j.biopha.2016.12.112

T.P. Monath, Yellow fever: An update, Lancet Infect. Dis. 1 (2001) 11–20. https://doi.org/10.1016/S1473-3099(01)00016-0. DOI: https://doi.org/10.1016/S1473-3099(01)00016-0

T.P. Monath, A.D.T. Barrett, Pathogenesis and Pathophysiology of Yellow Fever, Adv. Virus Res. 60 (2003) 343–395. https://doi.org/10.1016/S0065-3527(03)60009-6. DOI: https://doi.org/10.1016/S0065-3527(03)60009-6

C.L. Gardner, K.D. Ryman, Yellow fever: A reemerging threat, Clin. Lab. Med. 30 (2010) 237–260. https://doi.org/10.1016/j.cll.2010.01.001. DOI: https://doi.org/10.1016/j.cll.2010.01.001

M.M. Gómez, F.V.S. de Abreu, A.A.C. dos Santos, I.S. de Mello, M.P. Santos, I.P. Ribeiro, A. Ferreira-de-Brito, R.M. de Miranda, M.G. de Castro, M.S. Ribeiro, R. da C. Laterrière Junior, S.F. Aguiar, G.L.S. Meira, D. Antunes, P.H.M. Torres, D. Mir, A.C.P. Vicente, A.C.R. Guimarães, E.R. Caffarena, G. Bello, R. Lourenço-de-Oliveira, M.C. Bonaldo, Genomic and structural features of the yellow fever virus from the 2016–2017 Brazilian outbreak, J. Gen. Virol. (2018). https://doi.org/10.1099/jgv.0.001033. DOI: https://doi.org/10.1099/jgv.0.001033

J.A. González-Sánchez, G.F. Ramírez-Arroyo, Chikungunya Virus: History, Geographic Distribution, Clinical Picture, and Treatment., P. R. Health Sci. J. 37 (2018) 187–194. https://doi.org/10.1089/ast.2015.1406. DOI: https://doi.org/10.1089/ast.2015.1406

M.K. Huntington, J.A.Y. Allison, D. Nair, Emerging Vector-Borne Diseases, (2016).

R. Abdelnabi, D. Jochmans, E. Verbeken, J. Neyts, L. Delang, M.K. Huntington, J.A.Y. Allison, D. Nair, Antiviral treatment efficiently inhibits chikungunya virus infection in the joints of mice during the acute but not during the chronic phase of the infection, Antiviral Res. 149 (2018) 113–117. https://doi.org/10.1016/j.antiviral.2017.09.016. DOI: https://doi.org/10.1016/j.antiviral.2017.09.016

J.D. Beckham, K.L. Tyler, Arbovirus Infections, Contin. Lifelong Learn. Neurol. 21 (2015) 1599–1611. https://doi.org/10.1212/CON.0000000000000240. DOI: https://doi.org/10.1212/CON.0000000000000240

J.D. Fleck, A.H. Betti, F. Pereira da Silva, E.A. Troian, C. Olivaro, F. Ferreira, S.G. Verza, Saponins from Quillaja saponaria and Quillaja brasiliensis: Particular chemical characteristics and biological activities, Molecules. 24 (2019). https://doi.org/10.3390/molecules24010171. DOI: https://doi.org/10.3390/molecules24010171

Ö. Guclu-Ustundag, G. Mazza, Saponins: Properties, applications and processing, Crit. Rev. Food Sci. Nutr. 47 (2007) 231–258. https://doi.org/10.1080/10408390600698197. DOI: https://doi.org/10.1080/10408390600698197

A. de Paula Barbosa, Saponins as immunoadjuvant agent: A review, African J. Pharm. Pharmacol. 8 (2014) 1049–1057. https://doi.org/10.5897/AJPP2014.4136.

M.R. Roner, J. Sprayberry, M. Spinks, S. Dhanji, Antiviral activity obtained from aqueous extracts of the Chilean soapbark tree (Quillaja saponaria Molina), J. Gen. Virol. 88 (2007) 275–285. https://doi.org/10.1099/vir.0.82321-0. DOI: https://doi.org/10.1099/vir.0.82321-0

F. De Costa, A.C.A. Yendo, S.P. Cibulski, J.D. Fleck, P.M. Roehe, F.R. Spilki, G. Gosmann, A.G. Fett-Neto, Alternative inactivated poliovirus vaccines adjuvanted with Quillaja brasiliensis or Quil-A saponins are equally effective in inducing specific immune responses, PLoS One. 9 (2014) 1–7. https://doi.org/10.1371/journal.pone.0105374. DOI: https://doi.org/10.1371/journal.pone.0105374

A.C.A. Yendo, F. De Costa, J.D. Fleck, G. Gosmann, A.G. Fett-Neto, Irradiance-based treatments of Quillaja brasiliensis leaves (A. St.-Hil. & Tul.) Mart. as means to improve immunoadjuvant saponin yield, Ind. Crops Prod. 74 (2015) 228–233. https://doi.org/10.1016/j.indcrop.2015.04.052. DOI: https://doi.org/10.1016/j.indcrop.2015.04.052

F. Wallace, Z. Bennadji, F. Ferreira, C. Olivaro, Analysis of an immunoadjuvant saponin fraction from Quillaja brasiliensis leaves by electrospray ionization ion trap multiple-stage mass spectrometry, Phytochem. Lett. 20 (2017) 228–233. https://doi.org/10.1016/j.phytol.2017.04.020. DOI: https://doi.org/10.1016/j.phytol.2017.04.020

M.R. Roner, K.I. Tam, M. Kiesling-Barrager, Prevention of rotavirus infections in vitro with aqueous extracts of Quillaja Saponaria Molina, Future Med. Chem. 2 (2010) 1083–1097. https://doi.org/10.4155/fmc.10.206. DOI: https://doi.org/10.4155/fmc.10.206

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods. 65 (1983) 55–63. https://doi.org/10.1016/0022-1759(83)90303-4. DOI: https://doi.org/10.1016/0022-1759(83)90303-4

G. Fotakis, J.A. Timbrell, In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride, Toxicol. Lett. 160 (2006) 171–177. https://doi.org/10.1016/j.toxlet.2005.07.001. DOI: https://doi.org/10.1016/j.toxlet.2005.07.001

F.G. Burleson, T.M. Chambers, D.L. Wiedbrauk, F.G. 16 – Plaque assays, in: Virology, 1992: pp. 74–84. https://doi.org/10.1016/B978-0-12-144730-4.50019-9. DOI: https://doi.org/10.1016/B978-0-12-144730-4.50019-9

F.G. Burleson, T.M. Chambers, D.L. Wiedbrauk, F.G. 12 – TCID50, in: Virology, 1992: pp. 58–61. https://doi.org/10.1016/B978-0-12-144730-4.50015-1. DOI: https://doi.org/10.1016/B978-0-12-144730-4.50015-1

M.A. Ramakrishnan, Determination of 50% endpoint titer using a simple formula, World J. Virol. 5 (2016) 85. https://doi.org/10.5501/wjv.v5.i2.85. DOI: https://doi.org/10.5501/wjv.v5.i2.85

W. Li, J. Zhou, Y. Xu, Study of the in vitro cytotoxicity testing of medical devices, Biomed. Reports. 3 (2015) 617–620. https://doi.org/10.3892/br.2015.481. DOI: https://doi.org/10.3892/br.2015.481

S. Böttcher, S. Drusch, Saponins — Self-assembly and behavior at aqueous interfaces, Adv. Colloid Interface Sci. 243 (2017) 105–113. https://doi.org/10.1016/j.cis.2017.02.008. DOI: https://doi.org/10.1016/j.cis.2017.02.008

D.J. Marciani, Elucidating the Mechanisms of Action of Saponin-Derived Adjuvants, Trends Pharmacol. Sci. 39 (2018) 573–585. https://doi.org/10.1016/j.tips.2018.03.005. DOI: https://doi.org/10.1016/j.tips.2018.03.005

K. Wojciechowski, M. Orczyk, T. Gutberlet, T. Geue, Complexation of phospholipids and cholesterol by triterpenic saponins in bulk and in monolayers, Biochim. Biophys. Acta - Biomembr. 1858 (2016) 363–373. https://doi.org/10.1016/j.bbamem.2015.12.001. DOI: https://doi.org/10.1016/j.bbamem.2015.12.001

C.L. Reichert, H. Salminen, G. Badolato Bönisch, C. Schäfer, J. Weiss, Concentration effect of Quillaja saponin – Co-surfactant mixtures on emulsifying properties, J. Colloid Interface Sci. 519 (2018) 71–80. https://doi.org/10.1016/j.jcis.2018.01.105. DOI: https://doi.org/10.1016/j.jcis.2018.01.105

F. Silveira, S.P. Cibulski, A.P. Varela, J.M. Marqués, A. Chabalgoity, F. de Costa, A.C.A. Yendo, G. Gosmann, P.M. Roehe, C. Fernández, F. Ferreira, Quillaja brasiliensis saponins are less toxic than Quil A and have similar properties when used as an adjuvant for a viral antigen preparation, Vaccine. 29 (2011) 9177–9182. https://doi.org/10.1016/j.vaccine.2011.09.137. DOI: https://doi.org/10.1016/j.vaccine.2011.09.137

K.I. Tam, M.R. Roner, Characterization of in vivo anti-rotavirus activities of saponin extracts from Quillaja saponaria Molina, Antiviral Res. 90 (2011) 231–241. https://doi.org/10.1016/j.antiviral.2011.04.004. DOI: https://doi.org/10.1016/j.antiviral.2011.04.004

F.G. Burleson, T.M. Chambers, D.L. Wiedbrauk, F.G. 33 – Plaque Reduction Bioassay, in: Virology, 1992: pp. 152–156. https://doi.org/10.1016/B978-0-12-144730-4.50036-9. DOI: https://doi.org/10.1016/B978-0-12-144730-4.50036-9

J.A. Cardona-Ospina, F.A. Diaz-Quijano, A.J. Rodríguez-Morales, Burden of chikungunya in Latin American countries: Estimates of disability-adjusted life-years (DALY) lost in the 2014 epidemic, Int. J. Infect. Dis. 38 (2015) 60–61. https://doi.org/10.1016/j.ijid.2015.07.015. DOI: https://doi.org/10.1016/j.ijid.2015.07.015

Y.L. Zhao, G.M. Cai, X. Hong, L.M. Shan, X.H. Xiao, Anti-hepatitis B virus activities of triterpenoid saponin compound from Potentilla anserine L., Phytomedicine. 15 (2008) 253–258. https://doi.org/10.1016/j.phymed.2008.01.005. DOI: https://doi.org/10.1016/j.phymed.2008.01.005

M. Amoros, B. Fauconnier, R.L. Girre, In vitro antiviral activity of a saponin from Anagallis arvensis, Primulaceae, against herpes simplex virus and poliovirus, Antiviral Res. 8 (1987) 13–25. https://doi.org/10.1016/0166-3542(87)90084-2. DOI: https://doi.org/10.1016/0166-3542(87)90084-2

C.M.O. Simões, M. Amoros, L. Girre, Mechanism of antiviral activity of triterpenoid saponins, Phyther. Res. 13 (1999) 323–328. https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<323::AID-PTR448>3.0.CO;2-C. DOI: https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<323::AID-PTR448>3.0.CO;2-C

J. Jose, J.E. Snyder, R.J. Kuhn, A structural and functional perspective of alphavirus replication and assembly, Future Microbiol. 4 (2009) 837–856. https://doi.org/10.2217/fmb.09.59. DOI: https://doi.org/10.2217/fmb.09.59

J. Jose, A.B. Taylor, R.J. Kuhn, Spatial and Temporal Analysis of Alphavirus Replication and Assembly in Mammalian and Mosquito Cells, MBio. 8 (2017) e02294-16. https://doi.org/10.1128/mBio.02294-16. DOI: https://doi.org/10.1128/mBio.02294-16

G. Gerold, J. Bruening, B. Weigel, T. Pietschmann, Protein interactions during the Flavivirus and hepacivirus life cycle, Mol. Cell. Proteomics. 16 (2017) S75–S91. https://doi.org/10.1074/mcp.R116.065649. DOI: https://doi.org/10.1074/mcp.R116.065649

J.N. Conde, E.M. Silva, A.S. Barbosa, R. Mohana-Borges, The complement system in flavivirus infections, Front. Microbiol. 8 (2017) 1–7. https://doi.org/10.3389/fmicb.2017.00213. DOI: https://doi.org/10.3389/fmicb.2017.00213

B.L. Heiss, O.A. Maximova, A.G. Pletnev, Insertion of MicroRNA Targets into the Flavivirus Genome Alters Its Highly Neurovirulent Phenotype, J. Virol. 85 (2011) 1464–1472. https://doi.org/10.1128/jvi.02091-10. DOI: https://doi.org/10.1128/JVI.02091-10

N.L. Teterina, O.A. Maximova, H. Kenney, G. Liu, A.G. Pletnev, MicroRNA-based control of tick-borne flavivirus neuropathogenesis: Challenges and perspectives, Antiviral Res. 127 (2016) 57–67. https://doi.org/10.1016/j.antiviral.2016.01.003. DOI: https://doi.org/10.1016/j.antiviral.2016.01.003

L. Bavia, A.L.P. Mosimann, M.N. Aoki, C.N. Duarte Dos Santos, A glance at subgenomic flavivirus RNAs and microRNAs in flavivirus infections, Virol. J. 13 (2016) 1–21. https://doi.org/10.1186/s12985-016-0541-3. DOI: https://doi.org/10.1186/s12985-016-0541-3

Downloads

Published

2020-09-01

How to Cite

Troian, E. A., Schallenberger, K., da Silva, F. P., Dietrich, G. K., Ferreira Chiesa, F., Olivaro, C., Wallace, F., Fleck, J., & Verza, S. (2020). Screening for antiviral activity of two purified saponin fractions of Quillaja spp. against Yellow Fever Virus and Chikungunya Virus . International Journal for Innovation Education and Research, 8(9), 205-214. https://doi.org/10.31686/ijier.vol8.iss9.2615
Received 2020-08-05
Accepted 2020-08-28
Published 2020-09-01