Ozonized and natural compounds for in vitro Acinetobacter Baumannii treatment

Ozonized and natural compounds for in vitro Acinetobacter Baumannii treatment





Acinetobacter baumannii, Vegetable oils, Ozone, Antimicrobial activity, In vitro technique


Acinetobacter baumannii stands out as an opportunistic pathogen responsible for Healthcare-Related Infections. This study aimed to evaluate the efficacy of natural oils in natura and ozonated on A. baumannii mortality. The randomized experiment used the A. baumannii strain and natural oils (palm, canola, and coconut) ozonized and in natura (control group). Minimum inhibitory and bactericidal concentrations and chromatography were employed in the study. Through the ozonized and fresh oils antimicrobial action, the natural oils' effectiveness and the bacteria mortality were evaluated. The data was submitted to the Mann-Whitney and Kruskal-Wallis tests. When comparing the natural oils, ozonized canola oil stood out as the most efficient in destroying the bacteria. The other ozonized oils showed a 90% reduction in the microbial load in the first ten minutes of treatment. For use in natura, palm oil stood out with 85.9% microbial load reduction. According to the results obtained, the antibacterial activity of natural oils is remarkable, showing that they were expressively effective in inhibiting the A. baumannii growth, presenting themselves as a new adjuvant therapy antibacterial drug. The study concluded that the ozonized oils are more efficient in both MIC and MBC when compared between the ozonized and the untreated groups. The bacteria are sensitive to the ozonized oils.


Download data is not yet available.

Author Biographies

Wagner Rafael Da Silva, Universidade Brasil

PhD student of Postgraduate Program in Biomedical engineering

Dora Inês Kozusny-Andreani, Universidade Brasil

Department of Microbiology and Postgraduate Program in Biomedical engineering

Rogério Rodrigo Ramos, Universidade Brasil (UB), Fernandópolis, SP, Brazil.

Department of Microbiology and Postgraduate Program in Biomedical engineering


Roberts SA, Findlay R, Lang SD. Investigation of an outbreak of multi-drug resistant Acinetobacter baumannii in an intensive care burns unit. J Hosp Infect 2001;48(3):228-232. https://doi.org/10.1053/jhin.2001.0985 DOI: https://doi.org/10.1053/jhin.2001.0985

Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008;21(3):538-582. https://doi.org/10.1128/CMR.00058-07 DOI: https://doi.org/10.1128/CMR.00058-07

Breij A, Dijkshoorn L, Lagendijk E, et al. Do biofilm formation and interactions with human cells explain the clinical success of Acinetobacter baumannii? PLoS One 2010;5(5):e10732. https://doi.org/10.1371/journal.pone.0010732 DOI: https://doi.org/10.1371/journal.pone.0010732

Lee JC, Koerten H, van den Broek P, et al. Adherence of Acinetobacter baumannii strains to human bronchial epithelial cells. Res Microbiol 2006;157(4):360-366. https://doi.org/10.1016/j.resmic.2005.09.011 DOI: https://doi.org/10.1016/j.resmic.2005.09.011

Horton J, Pankey GA. Polymyxin B, colistin, and sodium colistimethate. Med Clin North Am 1982;66:135-142. https://doi.org/10.1016/S0025-7125(16)31447-x DOI: https://doi.org/10.1016/S0025-7125(16)31447-X

Drabick JJ, Bhattacharjee AK, Hoover DL, et al. Covalent polymyxin B conjugate with human immunoglobulin G as an antiendotoxin reagent. Antimicrob Agents Chemother 1998;42(3):583-588. https://doi.org/10.1128/AAC.42.3.583 DOI: https://doi.org/10.1128/AAC.42.3.583

Ko KS, Suh JY, Kwon KT, et al. High rates of resistance to colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea. J Antimicrob Chemother 2007;60(5):1163-1167. https://doi.org/10.1093/jac/dkm305 DOI: https://doi.org/10.1093/jac/dkm305

Arroyo LA, Mateos I, González V, Aznar J. In vitro activities of tigecycline, minocycline, and colistin-tigecycline combination against multi- and pandrug-resistant clinical isolates of Acinetobacter baumannii group. Antimicrob Agents Chemother 2009;53(3):1295-1296. https://doi.org/10.1128/AAC.01097-08 DOI: https://doi.org/10.1128/AAC.01097-08

Gomes C, Genteluci DB, Carvalho GL, et al. Acinetobacter baumannii multirresistentes: emergência de resistência à polimixina no Rio de Janeiro. Vigil sanit debate 2016;4(3):28-34. https://doi.org/10.22239/2317-269X.00732 DOI: https://doi.org/10.22239/2317-269x.00732

Lagacé-Wiens P, Rubinstein E. Adverse reactions to β-lactam antimicrobials. Expert Opin Drug Saf 2012;11(3):381-399. https://doi.org/10.1517/14740338.2012.643866 DOI: https://doi.org/10.1517/14740338.2012.643866

Mattappalil A, Mergenhagen KA. Neurotoxicity with antimicrobials in the elderly: a review. Clin Ther 2014;36(11):1489-1511. https://doi.org/10.1016/j.clinthera.2014.09.020 DOI: https://doi.org/10.1016/j.clinthera.2014.09.020

Ugazio E, Tullio V, Binello A, Tagliapietra S, Dosio F. Ozonated oils as antimicrobial systems in topical applications. Their characterization, current applications, and advances in improved delivery techniques. Molecules 2020;25(2):334. https://doi.org/10.3390/molecules25020334 DOI: https://doi.org/10.3390/molecules25020334

Travagli V, Zanardi I, Valacchi G, Bocci V. Ozone and ozonated oils in skin diseases: a review. Mediators Inflamm 2010;2010:610418. https://doi.org/10.1155/2010/610418 DOI: https://doi.org/10.1155/2010/610418

Valacchi G, Lim Y, Belmonte G, et al. Ozonated sesame oil enhances cutaneous wound healing in SKH1 mice. Wound Repair Regen 2011;19:107-115. https://doi.org/10.1111/j.1524-475X.2010.00649.x DOI: https://doi.org/10.1111/j.1524-475X.2010.00649.x

Liu J, Zhang P, Tian J, et al. Ozone therapy for treating foot ulcers in people with diabetes. Cochrane Database Syst Rev 2015;(10):CD008474. https://doi.org/10.1002/14651858.CD008474.pub2 DOI: https://doi.org/10.1002/14651858.CD008474.pub2

Viotto CMBW, Viotto LH, Zângaro RA, Kozusny-Andreani DI, Ramos RR. Treatment of diabetic lower limb wounds with ozonized sunflower oil and collagenase. J Endocrinol Diabetes Mellitus 2020:8:11-23. https://doi.org/10.12970/2310-9971.2020.08.03 DOI: https://doi.org/10.12970/2310-9971.2020.08.03

Williamson DA, Carter GP, Howden BP. Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns. Clin Microbiol Rev 2017;30(3):827-860. https://doi.org/10.1128/CMR.00112-16 DOI: https://doi.org/10.1128/CMR.00112-16

The United States Pharmacopeial Convention. Food Chemicals Codex, 9th Edition, Rockville: USA, 2014.

AOCS. American Oil Chemists Society, 7th Edition, Urbana: USA, 2017.

AOAC. Official Methods of Analysis, 20th Edition. Association of Official Analytical Chemists, Mryland: USA, 2016.

Ramos RR, Kozusny-Andreani DI, Fernandes AU, Baptista MS. Photodynamic action of protoporphyrin IX derivatives on Trichophyton rubrum. An Bras Dermatol 2016;91(2):135-140. http://dx.doi.org/10.1590/abd1806-4841.20163643 DOI: https://doi.org/10.1590/abd1806-4841.20163643

CLSI – Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Twenty-second Informational Suplement M100-s22, Wayne, PA 2012;32(3):1-184.

Favre B, Hofbauer B, Hildering KS, Ryder NS. Comparison of in vitro activities of 17 antifungal drugs against a panel of 20 dermatophytes by using a microdilution assay. J Clin Microbiol 2003;41(10):4817-9. http://dx.doi.org/10.1128/JCM.41.10.4817-4819.2003 DOI: https://doi.org/10.1128/JCM.41.10.4817-4819.2003

Allahghadri T, RasoolI I, Owlia P, et al. Antimicrobial property, antioxidant capacity and cytotoxicity of essential oil from cumin produced in Iran. J Food Sci 2010;75(2):H54-61. http://dx.doi.org/10.1111/j.1750-3841.2009.01467.x DOI: https://doi.org/10.1111/j.1750-3841.2009.01467.x

Yin NS, Abdullah S, Phin CK. Phytochemical constituents from leaves of Elaeis guineensis and their antioxidant and antimicrobial activities. Int J Pharm Pharmaceut Sci 2013;5:137-140. Available in: https://innovareacademics.in/journal/ijpps/Vol5Suppl4/7743.pdf

José M, Cyriac MB, Pai V, Varghese I, Shantaram N. Antimicrobial properties of Cocos nucifera (coconut) husk: an extrapolation to oral health. J Nat Sci Biol Med 2014;5(2):359-64. http://dx.doi.org/10.4103/0976-9668.136184 DOI: https://doi.org/10.4103/0976-9668.136184

Peña-Jiménez F, Zamora-Rodríguez Z, Hernández-Aco R, Fleitas-González E, Hernández-González A, Hernández-Rosado. Use of ozonized oils for the treatment of wounds in fattening bovine. Abanico Vet 2017;7(2):60-67. http://dx.doi.org/10.21929/abavet2017.72.5 DOI: https://doi.org/10.21929/abavet2017.72.5

Song M, Zeng Q, Xiang Y, et al. The antibacterial effect of topical ozone on the treatment of MRSA skin infection. Mol Med Rep 2018;17(2):2449-2455. https://doi.org/10.3892/mmr.2017.8148 DOI: https://doi.org/10.3892/mmr.2017.8148

Almeida NR, Beatriz A, Micheletti AM, Arruda EJ. Ozonized vegetable oils and therapeutic properties: a review. Orbital Elec J Chem 2012;4(4):313-326. http://dx.doi.org/10.17807/orbital.v4i4.467 DOI: https://doi.org/10.17807/orbital.v4i4.467

Diaz MF, Sanchez Y, Gomez M, et al. Physicochemical characteristics of ozonated sunflower oils obtained by different procedures. Grasas Aceites 2012;63(4):466-474. https://doi.org/10.3989/gya.073212 DOI: https://doi.org/10.3989/gya.073212

Valacchi G, Sticozzi C, Pecorelli A, Cervellati F, Cervellati C, Maioli E. Cutaneous responses to environmental stressors. Ann N Y Acad Sci 2012;1271:75-81. https://doi.org/10.1111/j.1749-6632.2012.06724.x DOI: https://doi.org/10.1111/j.1749-6632.2012.06724.x

Bocci V, Borrelli E, Travagli V, Zanardi I. The ozone paradox: ozone is a strong oxidant as well as a medical drug. Med Res Rev 2009;29(4):646-682. https://doi.org/10.1002/med.20150 DOI: https://doi.org/10.1002/med.20150

Kon KV, Rai KM. Plant essential oils and their constituents in coping with multidrug-resistant bacteria. Expert Rev Anti Infect Ther 2012;10(7):775-790. https://doi.org/10.1586/eri.12.57 DOI: https://doi.org/10.1586/eri.12.57

Captain J. Ozonated water, ozonated water, ozonated water, ozonated oil and its products [abstract]. Proceedings of the 5th WFOT Meeting; 2016 Nov 18-20, Mumbai, India. J Ozone Ther 2018;2(2):1-3. https://doi.org/10.7203/jo3t. 2.2.2018.11153 DOI: https://doi.org/10.7203/jo3t.2.2.2018.11153

Tofanini AJ. Controle de qualidade de óleos comestíveis. Monografia (Bacharelado em Química) – Faculdade de Química, Universidade Federal de Santa Catarina; 2004. 40 p.

Santos FMT, Greca IM. Metodologias de pesquisa no ensino de ciências na América Latina: como pesquisamos na década de 2000. Ciênc Educ (Bauru) 2013;19(1):15-33. https://doi.org/10.1590/S1516-73132013000100003 DOI: https://doi.org/10.1590/S1516-73132013000100003

Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plants extracts. J Appl Microbiol 1999;86(6):985-990. https://doi.org/10.1046/j.1365-2672.1999. 00780.x DOI: https://doi.org/10.1046/j.1365-2672.1999.00780.x

Garcia G, Allen AG, Cardoso AA. Development of a sensitive passive sampler using indigo trisulfonate for the determination of tropospheric ozone. J Environ Monit 2010;12(6):1325-1329. https://doi.org/10.1039/b920254d DOI: https://doi.org/10.1039/b920254d

Salsabila N, Moulydia F, Bismo S. Formulation of oleozon with Phaleria macrocarpa and Cinnamomum burmanii extract for diabetic wound treatment. IOP Conf Ser Mater Sci Eng 2018;334:012069. https://doi.org/10.1088/1757-899X/334/1/012069 DOI: https://doi.org/10.1088/1757-899X/334/1/012069

Batool N, Arshad M, Hassan F, Ilyas N, Shahzad A. Report-physicochemical and antimicrobial properties of canola (Brassica napus L.) seed oil. Pak J Pharm Sci 2018;31(5):2005-2009. Available in: https://pubmed.ncbi.nlm.nih.gov/30150201/

Syahmi ARM, Vijayarathna S, Sasidharan S, et al. Acute oral toxicity and brine shrimp lethality of Elaeis guineensis jacq., (oil palm leaf) methanol extract. Molecules 2010;15(11):8111-8121. https://doi.org/10.3390/molecules15118111 DOI: https://doi.org/10.3390/molecules15118111

Belay G, Tariku Y, Kebede T, Hymete A, Mekonnen Y. Ethnopharmacological investigations of essential oils isolated from five Ethiopian medicinal plants against eleven pathogenic bacterial strains. Phytopharmacology 2011;1(5):133-143. Available in: https://www.researchgate.net/publication/236161557

Vijayarathna S, Zakaria Z, Chen Y, Latha LY, Kanwar JR, Sasidharan S. The antimicrobial efficacy of Elaeis guineensis: characterization, in vitro and in vivo studies. Molecules 2012;17:4860-4877. https://doi.org/10.3390/molecules17054860 DOI: https://doi.org/10.3390/molecules17054860

Tortora GJ, Funke BR, Case CL. Microbiologia. Porto Alegre: Artmed, 2012.

Rajoo A, Sasidharan S, Jothy SL, Ramanathan S, Mansor SM. Ultrastructural study of Elaeis guineensis (oil palm) leaf and antimicrobial activity of its methanol extract against Staphylococcus aureus. Trop J Pharmaceut Res 2013;12:419-423. https://doi.org/10.4314/tjpr.v12i3.22 DOI: https://doi.org/10.4314/tjpr.v12i3.22

Handayani R, Sulistyo J, Rahayu RD. Extraction of coconut oil (Cocos nucifera L.) through fermentation system. Biodiversita 2009;10(3):151-157. https://doi.org/10.13057/biodiv/d100309 DOI: https://doi.org/10.13057/biodiv/d100309

Verma V, Bhardwaj A, Rathi S, Raja RB. A potential antimicrobial agent from Cocos nucifera mesocarp extract; development of a new generation antibiotic. ISCA J Biological Sci 2012;1(2):48-54. Available in: http://www.isca.in/IJBS/Archive/v1/i2/9.ISCA-JBS-2012-057%2520Done.php

Akinpelu DA, Alayande KA, Aiyegoro OA, Akinpelu OF, Okoh AI. Probable mechanisms of biocidal action of Cocos nucifera husk extract and fractions on bacteria isolates. BMC Complement Altern Med 2015;15:116. https://doi.org/10.1186/s12906-015-0634-3 DOI: https://doi.org/10.1186/s12906-015-0634-3




How to Cite

Silva, W. R. D. ., Kozusny-Andreani, D. I., & Ramos, R. R. (2021). Ozonized and natural compounds for in vitro Acinetobacter Baumannii treatment. International Journal for Innovation Education and Research, 9(4), 192–208. https://doi.org/10.31686/ijier.vol9.iss4.3040
Received 2021-03-08
Accepted 2021-03-22
Published 2021-04-01


Most read articles by the same author(s)

1 2 > >>