Protoporphyrin IX Associated with Visible Light for the Treatment of Trichophyton rubrum Causing Onychomycosis - An Updated Review

Authors

  • Matheus Alexandre Da Silva Taliari Universidade Brasil https://orcid.org/0000-0002-8704-1934
  • Andressa Costa Fontes Universidade Brasil https://orcid.org/0000-0003-4142-2261
  • Fellipe Genasculi Araujo Centro Universitário de Santa Fé do Sul (UNIFUNEC) https://orcid.org/0000-0001-9756-415X
  • Luis Lênin Vicente Pereira Universidade Brasil
  • Luciana Estevam Simonato Universidade Brasil (UB)
  • José Martins Pinto Neto Universidade Brasil (UB)
  • André Wilian Lozano Universidade Brasil (UB)
  • Nilton Cesar Pezati Boer Universidade Brasil (UB)
  • Wagner Rafael da Silva Universidade Brasil (UB)
  • Rafael Guerra de Aquino Universidade Brasil (UB)
  • Farid Jamil Silva de Arruda Centro Universitário de Santa Fé do Sul (UNIFUNEC)
  • Fábio Zanusso Prates Santa Casa de Votuporanga, Votuporanga, Brazil https://orcid.org/0000-0001-6607-3833
  • Noedi Leoni de Freitas Universidade Brasil (UB)
  • Jean Donizete Silveira Taliari Universidade Brasil (UB), Fernandópolis, SP, Brazil https://orcid.org/0000-0001-8931-9795
  • Rogério Rodrigo Ramos Universidade Brasil (UB) https://orcid.org/0000-0003-1977-4172

DOI:

https://doi.org/10.31686/ijier.vol10.iss6.3774

Keywords:

Trichophyton rubrum, Onychomycosis, Phototherapy, Protoporphyrin IX, Low-level light therapy, Oxigen-reactive species, Singlet oxygen, Drug Induced Liver Injury, Roussel Uclaf Causality Assessment Method

Abstract

Systemic medications used during the treatment of onychomycosis caused by Trichophyton rubrum may have relapse, making them costly and insignificant for the patient. Photodynamic therapy (PDT) is an advantageous therapeutic option for disease control, mainly due to the absence of risk of microbial resistance. The action of PDT is combined by three elements: photosensitizer (PS), visible light (VL) and molecular oxygen, leading to the formation of reactive oxygen species (ROS) or singlet oxygen formation (1O2), both ROS (type I mechanism) as 1O2 (type II mechanism) induce damage and death to microbial cells. This research was proposed as a study through a non-systematic review, to investigate the action of PS "Protoporphyrin IX" (Pp IX) associated with visible light on T. rubrum, contemplating clinical and relevant data regarding the treatment of onychomycosis by PDT. PubMed survey was conducted from June 2021 to April 2022. The research strategy included clinical trials, randomized trials, systematic reviews, meta-analyses and reviews in English. Pp IX has affinity for T. rubrum, which is justified by the incorporation of Pp IX into the cell membrane, which led to inhibition by LV irradiation. Thus, the photodynamic process of Pp IX may lead to cell death by type I and II mechanisms. The data found are promising, however, new studies in vitro and in vivo are suggested, since few studies have been found related to the theme.

Downloads

Download data is not yet available.

References

Ghannoum M, Isham N. Fungal nail infections (onychomycosis): a never-ending story? PLoS Pathog 2014; 10(6): e1004105. https://doi.org/10.1371/journal.ppat.1004105 DOI: https://doi.org/10.1371/journal.ppat.1004105

Gupta AK, Versteeg SG, Shear NH. Onychomycosis in the 21st century: an update on diagnosis, epidemiology, and treatment. J Cutan Med Surg 2017; 21(6): 525-539. https://doi.org/10.1177/1203475417716362 DOI: https://doi.org/10.1177/1203475417716362

Poulakos M, Grace Y, Machin JD, Dorval E. Efinaconazole and tavaborole. J Pharm Pract 2017; 30(2): 245-255. https://doi.org/10.1177/0897190016630904 DOI: https://doi.org/10.1177/0897190016630904

Pakshir K, Kamali M, Nouraei H, Zomorodian K, Motamedi M, Mahmoodi M. Molecular characterization and antifungal activity against non-dermatophyte molds causing onychomycosis. Sci Rep 2021;11(1): 20736. https://doi.org/10.1038/s41598-021-00104-0 DOI: https://doi.org/10.1038/s41598-021-00104-0

Lipner SR, Scher RK. Onychomycosis: clinical overview and diagnosis. J Am Acad Dermatol 2019; 80(4): 835-851. https://doi.org/10.1016/j.jaad.2018.03.062 DOI: https://doi.org/10.1016/j.jaad.2018.03.062

Grover C, Khurana A. Onychomycosis: newer insights in pathogenesis and diagnosis. Indian J Dermatol Venereol Leprol 2012; 78(3): 263-270. https://doi.org/10.4103/0378-6323.95440 DOI: https://doi.org/10.4103/0378-6323.95440

Leung AKC, Lam JM, Leong KF, et al. Onychomycosis: an updated review. Recent Pat Inflamm Allergy Drug Discov 2020; 14(1): 32-45. https://doi.org/10.2174/1872213X13666191026090713 DOI: https://doi.org/10.2174/1872213X13666191026090713

Peres NT, Maranhão FC, Rossi A, Martinez-Rossi NM. Dermatophytes: host-pathogen interaction and antifungal resistance. An Bras Dermatol 2010; 85: 657-667. https://doi.org/10.1590/s0365-05962010000500009 DOI: https://doi.org/10.1590/S0365-05962010000500009

Nir-Paz R, Elinav H, Pierard GE, et al. Deep infection by Trichophyton rubrum in an immunocompromised patient. J Clin Microbiol 2003; 41: 5298-52301. https://doi.org/10.1128/JCM.41.11.5298-5301.2003 DOI: https://doi.org/10.1128/JCM.41.11.5298-5301.2003

Maranhão FC, Paião FG, Fachin AL, Martinez-Rossi NM. Membrane transporter proteins are involved in Trichophyton rubrum pathogenesis. J Med Microbiol 2009; 58: 163-168. https://doi.org/10.1099/jmm.0.002907-0 DOI: https://doi.org/10.1099/jmm.0.002907-0

Giddey K, Monod M, Barblan J, et al. Comprehensive analysis of proteins secreted by Trichophyton rubrum and Trichophyton violaceum under in vitro conditions. J Proteome Res, 2007; 6(8): 3081-3092. https://doi.org/10.1021/pr070153m DOI: https://doi.org/10.1021/pr070153m

Sriranganadane D, Waridel P, Salamin K, et al. Identification of novel secreted proteases during extracellular proteolysis by dermatophytes at acidic pH. Proteomics 2011; 11(22): 4422-4433. https://doi.org/10.1002/pmic.201100234 DOI: https://doi.org/10.1002/pmic.201100234

Monod M, Méhul B. Recent findings in onychomycosis and their application for appropriate treatment. J Fungi (Basel) 2019; 5(1): 20. https://doi.org/10.3390/jof5010020 DOI: https://doi.org/10.3390/jof5010020

Dhamoon RK, Popli H, Gupta M. Novel drug delivery strategies for the treatment of onychomycosis. Pharm Nanotechnol 2019; 7(1): 24-38. https://doi.org/10.2174/2211738507666190228104031 DOI: https://doi.org/10.2174/2211738507666190228104031

Gupta AK, Foley KA. Evidence for biofilms in onychomycosis. G Ital Dermatol Venereol 2019; 154(1): 50-55. https://doi.org/10.23736/S0392-0488.18.06001-7 DOI: https://doi.org/10.23736/S0392-0488.18.06001-7

Girois SB, Chapuis F, Decullier E, Revol BG. Adverse effects of antifungal therapies in invasive fungal infections: review and meta-analysis. Eur J Clin Microbiol Infect Dis 2006; 25: 138-149. https://doi.org/10.1007/s10096-005-0080-0 DOI: https://doi.org/10.1007/s10096-005-0080-0

Rodrigues GB, Ferreira LK, Wainwright M, Braga GU. Susceptibilities of the dermatophytes Trichophyton mentagrophytes and T. rubrum microconidia to photodynamic antimicrobial chemotherapy with novel phenothiazinium photosensitizers and red light. J Photochem Photobiol B 2012; 116: 89-94. https://doi.org/10.1016/j.jphotobiol.2012.08.010 DOI: https://doi.org/10.1016/j.jphotobiol.2012.08.010

Ramos RR, Kozusny-Andreani DI, Fernandes AU, Baptista MS. Photodynamic action of protoporphyrin IX derivatives on Trichophyton rubrum. An Bras Dermatol 2016; 91(2): 135-140. https://doi.org/10.1590/abd1806-4841.20163643 DOI: https://doi.org/10.1590/abd1806-4841.20163643

Morgado LF, Trávolo ARF, Muehlmann LA, et al. Photodynamic therapy treatment of onychomycosis with aluminium-phthalocyanine chloride nanoemulsions: a proof of concept clinical trial. J Photochem Photobiol B 2017; 173: 266-270. https://doi.org/10.1016/j.jphotobiol.2017.06.010 DOI: https://doi.org/10.1016/j.jphotobiol.2017.06.010

Thomas J, Jacobson GA, Narkowicz CK, Peterson GM, Burnet H, Sharpe C. Toenail onychomycosis: an important global disease burden. J Clin Pharm Ther 2010; 35(5): 497-519. https://doi.org/10.1111/j.1365-2710.2009.01107.x DOI: https://doi.org/10.1111/j.1365-2710.2009.01107.x

Tan JS, Joseph WS. Common fungal infections of the feet in patients with diabetes mellitus. Drugs Aging 2004; 21(2): 101-112. https://doi.org/10.2165/00002512-200421020-00003 DOI: https://doi.org/10.2165/00002512-200421020-00003

Ameen M, Lear JT, Madan V, Mohd Mustapa MF, Richardson M. British Association of Dermatologists' guidelines for the management of onychomycosis 2014. Br J Dermatol 2014; 171(5): 937-958. https://doi.org/10.1111/bjd.13358 DOI: https://doi.org/10.1111/bjd.13358

Gupta AK, Daigle D, Foley KA. Topical therapy for toenail onychomycosis: an evidence-based review. Am J Clin Dermatol 2014; 15(6): 489-502. https://doi.org/10.1007/s40257-014-0096-2 DOI: https://doi.org/10.1007/s40257-014-0096-2

Gupta AK, Ryder JE, Baran R. The use of topical therapies to treat onychomycosis. Dermatol Clin 2003; 21(3): 481-489. https://doi.org/10.1016/s0733-8635(03)00025-1 DOI: https://doi.org/10.1016/S0733-8635(03)00025-1

Gupta AK, Paquet M, Simpson FC. Therapies for the treatment of onychomycosis. Clin Dermatol 2013; 31(5): 544-554. https://doi.org/10.1016/j.clindermatol.2013.06.011 DOI: https://doi.org/10.1016/j.clindermatol.2013.06.011

Bohn M, Kraemer KT. Dermatopharmacology of ciclopirox nail lacquer topical solution 8% in the treatment of onychomycosis. J Am Acad Dermatol 2000; 43(4 Suppl): S57-69. https://doi.org/10.1067/mjd.2000.109072 DOI: https://doi.org/10.1067/mjd.2000.109072

Shemer A, Nathansohn N, Trau H, Amichai B, Grunwald MH. Ciclopirox nail lacquer for the treatment of onychomycosis: an open non-comparative study. J Dermatol 2010; 37(2): 137-139. https://doi.org/10.1111/j.1346-8138.2009.00773.x DOI: https://doi.org/10.1111/j.1346-8138.2009.00773.x

Del Rosso JQ. The role of topical antifungal therapy for onychomycosis and the emergence of newer agents. J Clin Aesthet Dermatol 2014; 7(7): 10-18. Available from: https://pubmed.ncbi.nlm.nih.gov/25053979/

Sigurgeirsson B, Billstein S, Rantanen T, et al. L.I.ON. Study: efficacy and tolerability of continuous terbinafine (Lamisil) compared to intermittent itraconazole in the treatment of toenail onychomycosis. Lamisil vs. itraconazole in onychomycosis. Br J Dermatol 1999; 141(Suppl 56): 5-14. https://doi.org/10.1046/j.1365-2133.1999.00008.x DOI: https://doi.org/10.1046/j.1365-2133.1999.00008.x

Singal A, Khanna D. Onychomycosis: diagnosis and management. Indian J Dermatol Venereol Leprol 2011; 77(6): 659-672. https://doi.org/10.4103/0378-6323.86475 DOI: https://doi.org/10.4103/0378-6323.86475

Katz HI, Gupta AK. Oral antifungal drug interactions. Dermatol Clin 1997; 15(3): 535-544. https://doi.org/10.1016/s0733-8635(05)70460-5 DOI: https://doi.org/10.1016/S0733-8635(05)70460-5

Gupta AK, Versteeg SG, Shear NH. Common drug-drug interactions in antifungal treatments for superficial fungal infections. Expert Opin Drug Metab Toxicol 2018; 14(4): 387-398. https://doi.org/10.1080/17425255.2018.1461834 DOI: https://doi.org/10.1080/17425255.2018.1461834

Gupta AK, Paquet M, Simpson F, Tavakkol A. Terbinafine in the treatment of dermatophyte toenail onychomycosis: a meta-analysis of efficacy for continuous and intermittent regimens. J Eur Acad Dermatol Venereol 2013; 27(3): 267-272. https://doi.org/10.1111/j.1468-3083.2012.04584.x DOI: https://doi.org/10.1111/j.1468-3083.2012.04584.x

Bonsmann G, Schiller M, Luger TA, Ständer S. Terbinafine-induced subacute cutaneous lupus erythematosus. J Am Acad Dermatol 2001; 44(6): 925-931. https://doi.org/10.1067/mjd.2001.114565 DOI: https://doi.org/10.1067/mjd.2001.114565

Gupta AK, Drummond-Main C, Paquet M. Evidence-based optimal fluconazole dosing regimen for onychomycosis treatment. J Dermatolog Treat 2013; 24(1): 75-80. https://doi.org/10.3109/09546634.2012.703308 DOI: https://doi.org/10.3109/09546634.2012.703308

Lipner SR, Scher RK. Onychomycosis: clinical overview and diagnosis. J Am Acad Dermatol 2019; 80(4): 835-851. https://doi.org/10.1016/j.jaad.2018.03.062 DOI: https://doi.org/10.1016/j.jaad.2018.03.062

Lipner SR, Scher RK. Onychomycosis: treatment and prevention of recurrence. J Am Acad Dermatol 2019; 80(4): 853-867. https://doi.org/10.1016/j.jaad.2018.05.1260 DOI: https://doi.org/10.1016/j.jaad.2018.05.1260

Rendl M, Mayer C, Weninger W, Tschachler E. Topically applied lactic acid increases spontaneous secretion of vascular endothelial growth factor by human reconstructed epidermis. Br J Dermatol 2001; 145(1): 3-9. https://doi.org/10.1046/j.1365-2133.2001.04274.x DOI: https://doi.org/10.1046/j.1365-2133.2001.04274.x

Rich P, Scher RK, Breneman D, et al. Pharmacokinetics of three doses of once-weekly fluconazole (150, 300, and 450 mg) in distal subungual onychomycosis of the toenail. J Am Acad Dermatol 1998; 38(6 Pt 2): S103-109. https://doi.org/10.1016/s0190-9622(98)70493-1 DOI: https://doi.org/10.1016/S0190-9622(98)70493-1

Chang CH, Young-Xu Y, Kurth T, Orav JE, Chan AK. The safety of oral antifungal treatments for superficial dermatophytosis and onychomycosis: a meta-analysis. Am J Med 2007; 120(9): 791-798. https://doi.org/10.1016/j.amjmed.2007.03.021 DOI: https://doi.org/10.1016/j.amjmed.2007.03.021

Eşkut N, Gedizlioğlu M, Ünal O, Özlü C, Ergene U. Acute fluconazole toxicity: a case presenting with protean manifestations including systemic and neurologic symptoms. Postgrad Med 2021; 133(2): 250-252. https://doi.org/10.1080/00325481.2020.1840830 DOI: https://doi.org/10.1080/00325481.2020.1840830

Srebrnik A, Levtov S, Ben-Ami R, Brenner S. Liver failure and transplantation after itraconazole treatment for toenail onychomycosis. J Eur Acad Dermatol Venereol 2005; 19(2): 205-207. https://doi.org/10.1111/j.1468-3083.2005.00943.x DOI: https://doi.org/10.1111/j.1468-3083.2005.00943.x

Cathcart S, Cantrell W, Elewski Be. Onychomycosis and diabetes. J Eur Acad Dermatol Venereol 2009; 23(10): 1119-1122. https://doi.org/10.1111/j.1468-3083.2009.03225.x DOI: https://doi.org/10.1111/j.1468-3083.2009.03225.x

Niwa T, Shiraga T, Takagi A. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull 2005; 28(9): 1805-1808. https://doi.org/10.1248/bpb.28.1805 DOI: https://doi.org/10.1248/bpb.28.1805

Hoy NY, Leung AK, Metelitsa AI, Adams S. New concepts in median nail dystrophy, onychomycosis, and hand, foot, and mouth disease nail pathology. ISRN Dermatol 2012; 2012: 680163. https://doi.org/10.5402/2012/680163 DOI: https://doi.org/10.5402/2012/680163

Bodman MA, Krishnamurthy K. Onychomycosis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021. Available from: https://pubmed.ncbi.nlm.nih.gov/28722883/

Lecha M, Effendy I, Feuilhade de Chauvin M, Di Chiacchio N, Baran R; Taskforce on onychomycosis education. Treatment options--development of consensus guidelines. J Eur Acad Dermatol Venereol 2005; 19(Suppl 1): 25-33. https://doi.org/10.1111/j.1468-3083.2005.01284.x DOI: https://doi.org/10.1111/j.1468-3083.2005.01284.x

Piraccini BM, Alessandrini A. Onychomycosis: a review. J Fungi (Basel) 2015; 1(1): 30-43. https://doi.org/10.3390/jof1010030 DOI: https://doi.org/10.3390/jof1010030

Evans EG. The rationale for combination therapy. Br J Dermatol 2001; 145(Suppl 60): 9-13. https://pubmed.ncbi.nlm.nih.gov/11777263/ DOI: https://doi.org/10.1046/j.1365-2133.2001.145s60009.x

Tabara K, Szewczyk AE, Bienias W, et al. Amorolfine vs. ciclopirox - lacquers for the treatment of onychomycosis. Postepy Dermatol Alergol 2015; 32(1): 40-45. https://doi.org/10.5114/pdia.2014.40968 DOI: https://doi.org/10.5114/pdia.2014.40968

Olafsson JH, Sigurgeirsson B, Baran R. Combination therapy for onychomycosis. Br J Dermatol 2003; 149(Suppl 65): 15-18. https://doi.org/10.1046/j.1365-2133.149.s65.2.x DOI: https://doi.org/10.1046/j.1365-2133.149.s65.2.x

Paredes AH, Lewis JH. Terbinafine-induced acute autoimmune hepatitis in the setting of hepatitis B virus infection. Ann Pharmacother 2007; 41(5): 880-884. https://doi.org/10.1345/aph.1H400 DOI: https://doi.org/10.1345/aph.1H400

Raschi E, Poluzzi E, Koci A, Caraceni P, Ponti FD. Assessing liver injury associated with antimycotics: concise literature review and clues from data mining of the FAERS database. World J Hepatol 2014; 6(8): 601-612. https://doi.org/10.4254/wjh.v6.i8.601 DOI: https://doi.org/10.4254/wjh.v6.i8.601

Hussaini SH, Farrington EA. Idiosyncratic drug-induced liver injury: an update on the 2007 overview. Expert Opin Drug Saf 2014; 13(1): 67-81. https://doi.org/10.1517/14740338.2013.828032 DOI: https://doi.org/10.1517/14740338.2013.828032

Song JC, Deresinski S. Hepatotoxicity of antifungal agents. Curr Opin Investig Drugs 2005; 6(2): 170-177. Available from: https://pubmed.ncbi.nlm.nih.gov/15751740/

Kao WY, Su CW, Huang YS, et al. Risk of oral antifungal agent-induced liver injury in Taiwanese. Br J Clin Pharmacol 2014; 77(1): 180-189. https://doi.org/10.1111/bcp.12178 DOI: https://doi.org/10.1111/bcp.12178

Teschke R, Wolff A, Frenzel C, Schwarzenboeck A, Schulze J, Eickhoff A. Drug and herb induced liver injury: council for International Organizations of Medical Sciences scale for causality assessment. World J Hepatol 2014; 6(1): 17-32. https://doi.org/10.4254/wjh.v6.i1.17 DOI: https://doi.org/10.4254/wjh.v6.i1.17

LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; Roussel Uclaf Causality Assessment Method (RUCAM) in Drug Induced Liver Injury. LiverTox 2012; 1-8. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548272/

Bechet D, Mordon SR, Guillemin F, Barberi-Heyob MA. Photodynamic therapy of malignant brain tumours: a complementary approach to conventional therapies. Cancer Treat Rev 2014; 40(2): 229-241. https://doi.org/10.1016/j.ctrv.2012.07.004 DOI: https://doi.org/10.1016/j.ctrv.2012.07.004

Akimoto J. Photodynamic therapy for malignant brain tumors. Neurol Med Chir 2016; 56(4): 151-157. https://doi.org/10.2176/nmc.ra.2015-0296 DOI: https://doi.org/10.2176/nmc.ra.2015-0296

Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic therapy: a compendium of latest reviews. Cancers (Basel) 2021; 13(17): 4447. https://doi.org/10.3390/cancers13174447 DOI: https://doi.org/10.3390/cancers13174447

Inada NM, Costa MM, Guimarães OC, et al. Photodiagnosis and treatment of condyloma acuminatum using 5-aminolevulinic acid and homemade devices. Photodiagnosis Photodyn Ther 2012; 9(1): 60-68. https://doi.org/10.1016/j.pdpdt.2011.09.001 DOI: https://doi.org/10.1016/j.pdpdt.2011.09.001

Savellano MD, Hasan T. Targeting cells that overexpress the epidermal growth factor receptor with polyethylene glycolated BPD verteporfin photosensitizer immunoconjugates. Photochem Photobiol 2003; 77(4): 431-439. https://doi.org/10.1562/0031-8655(2003)077<0431:tctote>2.0.co;2 DOI: https://doi.org/10.1562/0031-8655(2003)077<0431:TCTOTE>2.0.CO;2

Lin Y, Zhou T, Bai R, Xie Y. Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic therapy. J Enzyme Inhib Med Chem 2020; 35(1): 1080-1099. https://doi.org/10.1080/14756366.2020.1755669 DOI: https://doi.org/10.1080/14756366.2020.1755669

Nyman ES, Hynninen PH. Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J Photochem Photobiol B 2004; 73(1-2): 1-28. https://doi.org/10.1016/j.jphotobiol.2003.10.002 DOI: https://doi.org/10.1016/j.jphotobiol.2003.10.002

Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med Sci 2009; 24(2): 259-268. https://doi.org/10.1007/s10103-008-0539-1 DOI: https://doi.org/10.1007/s10103-008-0539-1

Bigelow CE, Mitra S, Knuechel R, Foster TH. ALA- and ALA-hexylester-induced protoporphyrin IX fluorescence and distribution in multicell tumour spheroids. Br J Cancer 2001; 85(5): 727-734. https://doi.org/10.1054/bjoc.2001.1977 DOI: https://doi.org/10.1054/bjoc.2001.1977

Gronlund-Pakkanen S, Wahlfors J, Makinen K, et al. The fluorescence biodistribution and kinetics of aminolevulinic acid induced protoporphyrin IX in the bladder of a rat model with orthotopic urothelial carcinoma. J Urol 2002; 167(4): 1848-1853 Available from: https://pubmed.ncbi.nlm.nih.gov/11912446/ DOI: https://doi.org/10.1016/S0022-5347(05)65247-0

Theodossiou T, MacRobert AJ. Comparison of the photodynamic effect of exogenous photoprotoporphyrin and protoporphyrin IX on PAM 212 murine keratinocytes. Photochem Photobiol 2002; 76(5): 530-537. https://doi.org/10.1562/0031-8655(2002)076<0530:cotpeo>2.0.co;2 DOI: https://doi.org/10.1562/0031-8655(2002)076<0530:COTPEO>2.0.CO;2

Bonnett R, Martínez G. Photobleaching of compounds of the 5,10,15,20-Tetrakis(m-hydroxyphenyl)porphyrin series (m-THPP, m-THPC, and m-THPBC). Org Lett 2002; 4(12): 2013-2016. https://doi.org/10.1021/ol025842c DOI: https://doi.org/10.1021/ol025842c

Cernay T, Zimmermann HW. Selective photosensitization of mitochondria by the lipophilic cationic porphyrin POR10. J Photochem Photobiol B 1996; 34(2-3): 191-196. https://doi.org/10.1016/1011-1344(95)07267-5 DOI: https://doi.org/10.1016/1011-1344(95)07267-5

Zimmermann A, Ritsch-Marte M, Kostron H. mTHPC-mediated photodynamic diagnosis of malignant brain tumors. Photochem Photobiol 2001; 74(4): 611-616. https://doi.org/10.1562/0031-8655(2001)074<0611:MMPDOM>2.0.CO;2 DOI: https://doi.org/10.1562/0031-8655(2001)074<0611:MMPDOM>2.0.CO;2

Rollakanti KR, Kanick SC, Davis SC, Pogue BW, Maytin EV. Techniques for fluorescence detection of protoporphyrin IX in skin cancers associated with photodynamic therapy. Photonics Lasers Med 2013; 2(4): 287-303. https://doi.org/10.1515/plm-2013-0030 DOI: https://doi.org/10.1515/plm-2013-0030

Calzavara-Pinton P, Rossi MT, Sala R, Venturini M. Photodynamic antifungal chemotherapy. Photochem Photobiol 2012; 88(3): 512-522. https://doi.org/10.1111/j.1751-1097.2012.01107.x DOI: https://doi.org/10.1111/j.1751-1097.2012.01107.x

Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J 2016; 473(4): 347-364. https://doi.org/10.1042/BJ20150942 DOI: https://doi.org/10.1042/BJ20150942

Tampa M, Sarbu MI, Matei C, et al. Photodynamic therapy: a hot topic in dermato-oncology. Oncol Lett 2019; 17(5): 4085-4093. https://doi.org/10.3892/ol.2019.9939 DOI: https://doi.org/10.3892/ol.2019.9939

Konan YN, Gurny R, Allémann E. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 2002; 66(2): 89-106. https://doi.org/10.1016/s1011-1344(01)00267-6 DOI: https://doi.org/10.1016/S1011-1344(01)00267-6

Rajesh S, Koshi E, Philip K, Mohan A. Antimicrobial photodynamic therapy: an overview. J Indian Soc Periodontol 2011; 15(4): 323-327. https://doi.org/10.4103/0972-124X.92563 DOI: https://doi.org/10.4103/0972-124X.92563

De Rosa FS, Bentley MV. Photodynamic therapy of skin cancers: sensitizers, clinical studies and future directives. Pharm Res 2000; 17(12): 1447-1455. https://doi.org/10.1023/a:1007612905378 DOI: https://doi.org/10.1023/A:1007612905378

Donnelly RF, McCarron PA, Tunney MM. Antifungal photodynamic therapy. Microbiol Res 2008; 163(1): 1-12. https://doi.org/10.1016/j.micres.2007.08.001 DOI: https://doi.org/10.1016/j.micres.2007.08.001

Ramos RR, Paiva JL, Gomes JPFDS, Boer NP, Godoy JMP, Batigalia F. Photodynamic action of the red laser on Propionibacterium acnes. An Bras Dermatol 2017; 92(5): 622-625. https://doi.org/10.1590/abd1806-4841.20175651 DOI: https://doi.org/10.1590/abd1806-4841.20175651

Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother 2018; 106: 1098-1107. https://doi.org/10.1016/j.biopha.2018.07.049 DOI: https://doi.org/10.1016/j.biopha.2018.07.049

Kalka K, Merk H, Mukhtar H. Photodynamic therapy in dermatology. J Am Acad Dermatol 2000; 42(3): 389-413; 414-416. https://doi.org/10.1016/s0190-9622(00)90209-3 DOI: https://doi.org/10.1016/S0190-9622(00)90209-3

Ibbotson SH, Moseley H, Brancaleon L, et al. Photodynamic therapy in dermatology: dundee clinical and research experience. Photodiagnosis Photodyn Ther 2004; 1(3): 211-223. https://doi.org/10.1016/S1572-1000(04)00045-6 DOI: https://doi.org/10.1016/S1572-1000(04)00045-6

Christie JG, Kompella UB. Ophthalmic light sensitive nanocarrier systems. Drug Discov Today. 2008; 13(3-4): 124-134. https://doi.org/10.1016/j.drudis.2007.12.005 DOI: https://doi.org/10.1016/j.drudis.2007.12.005

Uchoa AF, Oliveira CS, Baptista MS. Relationship between structure and photoactivity of porphyrins derived from protoporphyrin IX. J Porphyrins Phthalocyanines 2010; 14: 832-845. https://doi.org/10.1142/S108842461000263X DOI: https://doi.org/10.1142/S108842461000263X

Weber G, Charitat T, Baptista MS, et al. Lipid oxidation induces structural changes in biomimetic membranes. Soft Matter 2014; 10(24): 4241-4247. https://doi.org/10.1039/c3sm52740a DOI: https://doi.org/10.1039/c3sm52740a

Avci P, Gupta A, Sadasivam M, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 2013; 32(1): 41-52. https://pubmed.ncbi.nlm.nih.gov/24049929/

Zhang P, Wu MX. A clinical review of phototherapy for psoriasis. Lasers Med Sci 2018; 33(1): 173-180. https://doi.org/10.1007/s10103-017-2360-1 DOI: https://doi.org/10.1007/s10103-017-2360-1

Kwon HH, Lee JB, Yoon JY, et al. The clinical and histological effect of home-use, combination blue-red LED phototherapy for mild-to-moderate acne vulgaris in Korean patients: a double-blind, randomized controlled trial. Br J Dermatol 2013; 168: 1088-1094. https://doi.org/10.1111/bjd.12186 DOI: https://doi.org/10.1111/bjd.12186

Niu T, Tian Y, Ren Q, Wei L, Li X, Cai Q. Red light interferes in UVA-induced photoaging of human skin fibroblast cells. Photochem Photobiol 2014; 90(6): 1349-1358. https://doi.org/10.1111/php.12316. DOI: https://doi.org/10.1111/php.12316

Wu L, Luderer M, Yang X, et al. Surface passivation of carbon nanoparticles with branched macromolecules influences near infrared bioimaging. Theranostics 2013; 3: 677-686. https://doi.org/10.7150/thno.6535 DOI: https://doi.org/10.7150/thno.6535

Kang Y-F, Li Y-H, Fang Y-W, Xu Y, Wei X-M, Yin X-B. Carbon quantum dots for zebrafish fluorescence imaging. Sci Rep 2015; 5: 11835. https://doi.org/10.1038/srep11835 DOI: https://doi.org/10.1038/srep11835

Aguilar Cosme JR, Bryant HE, Claeyssens F. Carbon dot-protoporphyrin IX conjugates for improved drug delivery and bioimaging. PLoS One 2019; 14(7): e0220210. https://doi.org/10.1371/journal.pone.0220210 DOI: https://doi.org/10.1371/journal.pone.0220210

Fischer MJ. Amine coupling through EDC/NHS: a practical approach. Methods Mol Biol 2010; 627: 55-73. https://doi.org/10.1007/978-1-60761-670-2_3 DOI: https://doi.org/10.1007/978-1-60761-670-2_3

Zhai X, Zhang P, Liu C, et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 2012; 48: 7955-7957. https://doi.org/10.1039/c2cc33869f DOI: https://doi.org/10.1039/c2cc33869f

Tsay JM, Trzoss M, Shi L, et al. Singlet oxygen production by Peptide-coated quantum dot-photosensitizer conjugates. J Am Chem Soc 2007; 129: 6865-6871. https://doi.org/10.1021/ja070713i DOI: https://doi.org/10.1021/ja070713i

Fowley C, Nomikou N, McHale AP, McCaughan B, Callan JF. Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot-protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy. Chem Commun (Camb) 2013; 49: 8934-8936. https://doi.org/10.1039/c3cc45181j DOI: https://doi.org/10.1039/c3cc45181j

Beack S, Kong WH, Jung HS, et al. Photodynamic therapy of melanoma skin cancer using carbon dot-Chlorin e6-Hyaluronate conjugate. Acta Biomater 2015; 26: 295-305. https://doi.org/10.1016/j.actbio.2015.08.027 DOI: https://doi.org/10.1016/j.actbio.2015.08.027

Sun Y-P, Wang P, Lu Z, et al. Host-guest carbon dots for enhanced optical oroperties and beyond. Sci Rep 2015; 5: 12354 https://doi.org/10.1038/srep12354 DOI: https://doi.org/10.1038/srep12354

Li Y, Zheng X, Zhang X, et al. Porphyrin-based carbon dots for photodynamic therapy of hepatoma. Adv Healthc Mater 2017; 6: 1600924 https://doi.org/10.1002/adhm.201600924 DOI: https://doi.org/10.1002/adhm.201600924

Taylor EL, Brown SB. The advantages of aminolevulinic acid photodynamic therapy in dermatology. J Dermatolog Treat 2002; 13(Suppl 1): S3-11. https://doi.org/10.1080/095466302317414645. DOI: https://doi.org/10.1080/095466302317414645

Smijs TG, Pavel S. The susceptibility of dermatophytes to photodynamic treatment with special focus on Trichophyton rubrum. Photochem Photobiol 2011; 87(1): 2-13. https://doi.org/10.1111/j.1751-1097.2010.00848.x DOI: https://doi.org/10.1111/j.1751-1097.2010.00848.x

Calzavara-Pinton PG, Venturini M, Capezzera R, Sala R, Zane C. Photodynamic therapy of interdigital mycoses of the feet with topical application of 5-aminolevulinic acid. Photodermatol Photoimmunol Photomed 2004; 20(3): 144-147. https://doi.org/10.1111/j.1600-0781.2004.00095.x DOI: https://doi.org/10.1111/j.1600-0781.2004.00095.x

Kamp H, Tietz HJ, Lutz M, et al. Antifungal effect of 5-aminolevulinic acid PDT in Trichophyton rubrum. Mycoses. 2005; 48(2): 101-107. https://doi.org/10.1111/j.1439-0507.2004.01070.x DOI: https://doi.org/10.1111/j.1439-0507.2004.01070.x

Piraccini BM, Rech G, Tosti A. Photodynamic therapy of onychomycosis caused by Trichophyton rubrum. J Am Acad Dermatol 2008; 59(5 Suppl): S75-76. https://doi.org/10.1016/j.jaad.2008.06.015 DOI: https://doi.org/10.1016/j.jaad.2008.06.015

Sotiriou E, Panagiotidou D, Ioannides D. 5-Aminolevulininic acid photodynamic therapy treatment for tinea cruris caused by Trichophyton rubrum: report of 10 cases. J Eur Acad Dermatol Venereol 2009; 23(3): 341-342. https://doi.org/10.1111/j.1468-3083.2008.02880.x DOI: https://doi.org/10.1111/j.1468-3083.2008.02880.x

Sotiriou E, Koussidou T, Patsatsi A, Apalla Z, Ioannides D. 5-Aminolevulinic acid-photodynamic treatment for dermatophytic tinea pedis of interdigital type: a small clinical study. J Eur Acad Dermatol Venereol 2009; 23(2): 203-204. https://doi.org/10.1111/j.1468-3083.2008.02783.x DOI: https://doi.org/10.1111/j.1468-3083.2008.02783.x

Prasad S, Coias J, Chen HW, Jacobe H. Utilizing UVA-1 phototherapy. Dermatol Clin 2020; 38(1): 79-90. https://doi.org/10.1016/j.det.2019.08.011 DOI: https://doi.org/10.1016/j.det.2019.08.011

Rathod DG, Muneer H, Masood S. Phototherapy. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021. Available from: https://pubmed.ncbi.nlm.nih.gov/33085287/

Ming L, Cheng K, Chen Y, Yang R, Chen D. Enhancement of tumor lethality of ROS in photodynamic therapy. Cancer Med 2021; 10(1): 257-268. https://doi.org/10.1002/cam4.3592 DOI: https://doi.org/10.1002/cam4.3592

Garg AD, Krysko DV, Vandenabeele P, Agostinis P. DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. Photochem Photobiol Sci 2011; 10(5): 670-680. https://doi.org/10.1039/c0pp00294a DOI: https://doi.org/10.1039/c0pp00294a

Rodríguez ME, Cogno IS, Milla Sanabria LS, Morán YS, Rivarola VA. Heat shock proteins in the context of photodynamic therapy: autophagy, apoptosis and immunogenic cell death. Photochem Photobiol Sci 2016; 15(9): 1090-1102. https://doi.org/10.1039/c6pp00097e DOI: https://doi.org/10.1039/C6PP00097E

Nath S, Obaid G, Hasan T. The course of immune stimulation by photodynamic therapy: bridging fundamentals of photochemically induced immunogenic cell death to the enrichment of T-cell repertoire. Photochem Photobiol 2019; 95(6): 1288-1305. https://doi.org/10.1111/php.13173 DOI: https://doi.org/10.1111/php.13173

Downloads

Published

2022-06-01

How to Cite

Taliari, M. A. D. S., Fontes, A. C., Araujo, F. G., Pereira, L. L. V., Simonato, L. E., Pinto Neto, J. M., Lozano, A. W., Boer, N. C. P., da Silva, W. R., de Aquino, R. G., de Arruda, F. J. S., Prates, F. Z., de Freitas, N. L., Taliari, J. D. S., & Ramos, R. R. (2022). Protoporphyrin IX Associated with Visible Light for the Treatment of Trichophyton rubrum Causing Onychomycosis - An Updated Review. International Journal for Innovation Education and Research, 10(6), 84-101. https://doi.org/10.31686/ijier.vol10.iss6.3774

Most read articles by the same author(s)

1 2 > >>