Anatomical changes in Urochloa Plantaginea and Urochloa Platyphylla under different soil moisture conditions

Authors

  • Lucas Chagastelles Pinto de Macedo Universidade Federal de Santa Maria
  • Sylvio Henrique Bidel Dornelles Universidade Federal de Santa Maria https://orcid.org/0000-0002-1097-6176
  • Liliana Essi Universidade Federal de Santa Maria
  • Matheus Bohrer Scherer Universidade Federal de Santa Maria https://orcid.org/0000-0003-2977-4141
  • Jéssica Cezar Cassol Federal University of Santa Maria https://orcid.org/0000-0002-5229-6187
  • Mariane Peripolli Universidade Federal de Santa Maria
  • Jaíne Rubert Universidade Federal de Santa Maria

DOI:

https://doi.org/10.31686/ijier.vol9.iss8.3306

Keywords:

Anatomy, Brachiaria, Hypoxia

Abstract

Urochloa plantaginea and Urochloa platyphylla are common weeds in the highland area. However, in recent years, they have been found in wetlands and poorly drained soils, but the biology and behavior of the species in these conditions are not known. Thus, the objective was to assess anatomical changes in plants of Urochloa plantaginea and Urochloa platyphylla grown under different soil moisture conditions, as well as the adaptive structures generated as a result of each environment. A completely randomized experimental design in the form of a 2x2 factorial design was used, with factor A being two species of Urochloa (U. plantaginea and U. platyphylla), and species B being three soil moisture conditions (50 and 100% FC and 5 cm water depth), with four repetitions. The assessments were performed by means of anatomical cuts, observing the number and diameter (micrometers - μm) of aerenchymas in stems, roots and leaves; total diameter and the central root cylinder (μm); diameter of the fistula medulla and cortex (μm) in stems; mesophyll thickness and leaf midrib (μm). It was found that, for the two species of Urochloa, the water depth condition induced an increase in the number and diameter of aerenchymas in roots and leaves and provided a larger diameter of the fistulous pith in stems. The diameter of the central cylinder and the thickness of the leaf mesophyll midrib were more compact at 50% FC, also, for both species. Therefore, the adaptive structures generated vary as a result of the field capacity of the soil.

Downloads

Download data is not yet available.

References

Alves, J. D., Magalhaes, M. M., Goulart, P. de F. P., Dantas, B. F., Gouvea, J. A. de, Purcino, R. P., ... Silveira, T. (2002). Mecanismos de tolerância da variedade de milho "Saracura" (BRS 4154) ao alagamento. Revista Brasileira de Milho e Sorgo, 1: 41-52. doi: 10.18512/1980-6477/rbms.v1n1p41-52 DOI: https://doi.org/10.18512/1980-6477/rbms.v1n1p41-52

Andrade, R. S., Navroski, M. C., Pereira, M. O., & Sá, A. C. S. (2020). Morphological and physiological variation in Toona ciliata under water and salinity stress. Ciência Rural, v. 50, n. 6, 1–7. doi: 10.1590/0103-8478cr20190581 DOI: https://doi.org/10.1590/0103-8478cr20190581

Bonfim-Silva, E. M., da Silva, T. J. A., Cabral, C. E. A., Kroth, B. E., & Rezende, D. (2011). Desenvolvimento inicial de gramíneas submetidas ao estresse hídrico. Revista Caatinga, 24(2), 180-186

Both, V., Brackmann, A., Weber, A., Anese, R. D. O., & Thewes, F. R. (2014). Estresse inicial por baixo oxigênio seguido do armazenamento em atmosfera controlada de maçãs' Royal Gala'. Revista Ciência Agronômica, 45(4), 708-717. doi: 10.1590/S1806-66902014000400008 DOI: https://doi.org/10.1590/S1806-66902014000400008

Dalmolin, Â. C., de Almeida Lobo, F., Vourlitis, G. L., Dalmagro, H. J., Junior, M. Z. A., & Ortiz, C. E. R. (2018). Physiological adjustments of an invasive tree species to extreme hydrological events in a tropical seasonal wetland. Trees, 32(5), 1365-1375. doi: 10.1007/s00468-018-1718-8 DOI: https://doi.org/10.1007/s00468-018-1718-8

Estatcamp. Software Action. (2014). Estatcamp - Consultoria em estatística e qualidade, São Carlos, SP. Disponível em: http://www.portalaction.com.br Acesso em: 27 jun. 2020.

Feder, N., & O’Brien, T. P. (1968). Plant microthecnique: some principles and new methods. America Journal of Botany, 55 (1): 123-142. doi: 10.2307/2440500 DOI: https://doi.org/10.1002/j.1537-2197.1968.tb06952.x

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia (UFLA), 35 (6), 1039-1042. doi: 10.1590/S1413-70542011000600001 DOI: https://doi.org/10.1590/S1413-70542011000600001

Forsythe, W. Física de suelos. (1975). Manual de Laboratório. Instituto interamericano de ciência agrícola, San José, Costa Rica.

Galon, L., Agazzi, L. R., Vargas, L., Nonemacher, F., Basso, F. J. M., Perin, G. F., & Winter, F. L. (2015). Competitive ability of canola hybrids with weeds. Planta Daninha, 33(3), 413-423. doi: 10.1590/S0100-83582015000300004 DOI: https://doi.org/10.1590/S0100-83582015000300004

Gao, H., Tan, H., Xie, Y., Zhou, M., Li, F., & Zhu., L. (2016). Morphological responses to different flooding regimes in Carex brevicuspis. Nordic Journal of Botany. 34 (4) 435- 441. doi: 10.1111/njb.00946 DOI: https://doi.org/10.1111/njb.00946

Gealy, D. R., Anders, M., Watkins, B., & Duke, S. (2014). Crop performance and weed suppression by weed-suppressive rice cultivars in furrow-and flood-irrigated systems under reduced herbicide inputs. Weed science, 62(2), 303-320. doi: 10.1614/WS-D-13-00104.1 DOI: https://doi.org/10.1614/WS-D-13-00104.1

Gerrits, P.O., & Smid, L. (1983). A new, less toxic polymerization system for embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections. Journal Microscopy, 132: 81-85. doi: 10.1111/j.1365-2818.1983.tb04711.x DOI: https://doi.org/10.1111/j.1365-2818.1983.tb04711.x

Hossain, Md. A., & Uddin, S. N. (2011). Mechanisms of waterlogging tolerance in wheat: Morphological and metabolic adaptations under hypoxia or anoxia. Australian Journal of Crop Science, 5(9): 1094-1101.

Ismail, A. M., Johnson, D. E., Ella, E. S., Vergara, G. V., & Baltazar, A. M. (2012). Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment. AoB Plants, 2012. doi: 10.1093/aobpla/pls019 DOI: https://doi.org/10.1093/aobpla/pls019

Joshi, R., & Kumar, P. (2012). Lysogenous aerenchyma formation involves non-apoptotic programed cell death in rice (Oryza sativa L.) roots. Physiology and Molecular Biology Plants, 18 (1), 1-9. doi: 10.1007/s12298-011-0093-3 DOI: https://doi.org/10.1007/s12298-011-0093-3

Kissmann, K. G. (1997). Plantas infestantes e nocivas. Ed. 2. São Paulo, Basf Brasileira.

Kroth, B. E. (2013). Características produtivas e nutricionais de gramíneas forrageiras em condições de excesso e déficit hídrico. Rondonópolis-MT: Dissertação (Mestrado) - Universidade Federal de Mato Grosso, Instituto de Ciências Agrárias e Tecnológicas, Programa de Pós-Graduação em Engenharia Agrícola.

Liu, Z., Cheng, R., Xiao, W., Guo, Q., & Wang, N. (2014). Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PloS one, 9(9), 107-636. doi: 10.1371/journal.pone.0107636 DOI: https://doi.org/10.1371/journal.pone.0107636

Mariath, J. E. de A., & Santos, R. P. dos. (1996). Meios ópticos e eletrônicos no estudo da estrutura vegetal. UFRGS. Porto Alegre. Manual de Laboratório. 24-25.

Medri, M. E., & Correa, M. A. (2011). Aspectos histológicos e bioquímicos de Joannesia princips e Spathodea campanulata, crescendo em solos na capacidade de campo, encharcado e alagado. Semina, 6 (3): 147-154. doi: 10.5433/1679-0383.1985v6n3p147 DOI: https://doi.org/10.5433/1679-0367.1985v6n3p147

Meier, U. (2001). Growth stages of mono-and dicotyledonous plants - BBCH. 2. ed. Berlin: German Federal Biological Research Centre for Agriculture and Forestry.

Pareek, A., Sopory, S. K., & Bohnert, H. J. (2011). Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Dordrecht: Springer, 526. doi: 10.1093/aob/mcr053 DOI: https://doi.org/10.1007/978-90-481-3112-9

Pegg T., Edelmann R. R., & Gladish D. K. (2020). Imuno profilização de modificações de carboidratos na parede celular durante a formação de aerênquima induzido por inundação em raízes de Fabaceae. Front Plant Sci. 10:1805. doi: 10.3389/fpls.2019.01805 DOI: https://doi.org/10.3389/fpls.2019.01805

Pires, M. F., Castro, E. M., Magalhães, P. C., Silva Neta, I. C., & Monteiro, A. G. D. P. (2015). Etileno e peróxido de hidrogênio na formação de aerênquima em milho tolerante a alagamento intermitente. Pesquisa Agropecuaria Brasileira. 50 (9): 779-87. doi: 10.1590/S0100-204X2015000900006 DOI: https://doi.org/10.1590/S0100-204X2015000900006

Rodrigues de S. T., Lins, J. T., Cattem, M. V., Jardim, V. C., Buckeridge, M. S., Grossi-de-Sá, M. F. & Alves-Ferreira, M. (2019). Evaluation of Setaria viridis physiological and gene expression responses to distinct water-deficit conditions. Biotechnology Research and Innovation, 3, 42-58. https://doi.org/10.1016/j.biori.2020.03.001 DOI: https://doi.org/10.1016/j.biori.2020.03.001

Shirasuna, R. T. Urochloa. In: Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. 2015. Disponível em: <http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB20516>. Acesso em 20 maio de 2020.

SOSBAI - Sociedade Sul Brasileira De Arroz Irrigado. (2014). Reunião Técnica da Cultura do Arroz Irrigado. Arroz Irrigado: Recomendações técnicas da pesquisa para o sul do Brasil. Bento Gonçalves, RS, SOSBAI.

Taiz, L., & Zeiger, E. (2013). Fisiologia vegetal (5a ed.). Porto Alegre, RS: Artmed

Vasellati, V., Oesterheld, M., Medan, D., & Loreti, J. (2001). Effects of flooding and drought on the anatomy of Paspalum dilatatum. Annals of Botany, 88: 355-360. DOI: https://doi.org/10.1006/anbo.2001.1469

Velho, G. F., Crusciol, C. A. C., Velini, E. D., Castro, G. S. A., & Borghi, E. (2012). Interferência de Brachiaria plantaginea com a cultura do arroz, cv. Primavera. Planta Daninha, 30(1), 17-26. doi: 10.1590/S0100-83582012000100003 DOI: https://doi.org/10.1590/S0100-83582012000100003

Voesenek L. A. C. J., & Sasidharan, R. (2013). Ethylene—and oxygen signalling—drive plant survival during flooding. Plant Biology, Stuttgart, v.15, n.3, p.426–435. doi: 10.1111/plb.12014 DOI: https://doi.org/10.1111/plb.12014

Yamauchi, T., Shimamura, S., Nakazono, M., & Mochizuki, T. (2013). Aerenchyma formation in crop species: a review. Field Crops Research, 152, 8-16. doi: 10.1016/j.fcr.2012.12.008 DOI: https://doi.org/10.1016/j.fcr.2012.12.008

Yin, D., Chen, S., Chen, F., & Jiang, J. (2013). Ethylene promotes induction faerenchymaformationan de thanolic fermentation in waterlogged roots of Dendran the maspp. Mol. Biol. Rep. 40, 4581–4590. 2013. doi: 10.1007/s11033-013-2550-2 DOI: https://doi.org/10.1007/s11033-013-2550-2

Downloads

Published

2021-08-01

How to Cite

Chagastelles Pinto de Macedo, L., Bidel Dornelles, S. H. ., Essi, L., Bohrer Scherer, M., Cezar Cassol, J., Peripolli, M., & Rubert, J. (2021). Anatomical changes in Urochloa Plantaginea and Urochloa Platyphylla under different soil moisture conditions. International Journal for Innovation Education and Research, 9(8), 393-406. https://doi.org/10.31686/ijier.vol9.iss8.3306
Received 2021-07-08
Accepted 2021-07-21
Published 2021-08-01

Most read articles by the same author(s)