Port logistics viability analysis
Case study of the autonomous port of Cotonou (BENIN) (PAC)
DOI:
https://doi.org/10.31686/ijier.vol9.iss10.3410Keywords:
Port Logistics Viability, AHP, Benin, Autonomous Port of CotonouAbstract
This article aims to perform the logistic viability analysis of PAC for West Africa using the AHP multicriteria method. This port contributes largely in the country's economy through customs and tax revenues, the formation of the Gross Domestic Product (GDP) and also in international trade. Four criteria (quality of infrastructure and services, equipment productivity, and logistics cost of cargo) were modeled. With the result, the port infrastructure criterion is most important, followed by the port equipment criterion. Showing the importance of each port logistics viability criterion (infrastructure, service, equipment, cost), the alternative long-term logistics viability is preferable to the medium-term and short-term. The application of the AHP shows in its result that for long-term port logistics viability, it is preferable to invest more in modern and quality infrastructure and equipment.
References
AGUARÓN J., ESCOBAR M.T., MORENO-JIMÉNEZ J.M. Reducing the inconsistency measured by the geometric consistency index in the analytic hierarchy process. EUR. J. Oper. Res. (2020). DOI: https://doi.org/10.1016/j.ejor.2020.06.014
ALVES, J. R. X. ET ALVES, J. M. (2015), "Site definition for industrial installation with the support of the hierarchical analysis method (AHP)", Production, Vol.25 No.1, pp.13-26, DOI: https://doi.org/10.1590/S0103-65132014005000023
ANDRÉ DE BRITO ARUEIRA, Application of the AHP Method for Carrier Evaluation, Master's dissertation, 2014, Rio de Janeiro.
AKYUZ, E., KARAHALIOS, H., CELIK, M., Assessment of the maritime labor convention compliance using balanced scorecard and analytic hierarchy process approach. Marit. Pol. Manag. 42 (2) (2015), 145-162. DOI: https://doi.org/10.1080/03088839.2014.944239
BARFOD M.B., HONEST R.VD, SALLING K.B. Modeling group perceptions using stochastic simulation by scaling questions in the multiplicative AHP. Int. J. Inf. Technol. Decis. Mak. , 15 (2) (2016) , pp. 453 - 474. DOI: https://doi.org/10.1142/S0219622016500103
BAYAZIT O, KARPAK B. O. AHP application in supplier selection. Proceedings of the International Symposium on the ISAHP Analytic Hierarchy Process. 2005, Honolulu,2005:1-24. DOI: https://doi.org/10.13033/isahp.y2005.011
CHANGSHENG LIN AND GANG KOU. A heuristic method to rank the alternatives in the AHP synthesis, Applied Solt Computing, Volume 100, March 2021, 106916. DOI: https://doi.org/10.1016/j.asoc.2020.106916
CSATÓ L. Characterization of the logarithmic least squares method. European J. Oper. Res. , 276 (1) (2019) , pp. 212 - 216. DOI: https://doi.org/10.1016/j.ejor.2018.12.046
DONG Y., LI C., CHICLANA F., HERRERA-VIEDMA E. Mean case consistency measurement and analysis of reciprocal preference relations with interval values. Knowledge-based system. 114 (2016) , pp. 108 - 117. DOI: https://doi.org/10.1016/j.knosys.2016.10.005
EKUOBASE G.O. & OLUTAYO V. A. Fuzzy Analytical Hierarchical Process Model and ICT Maturity Model of SMEs for ICT Maturity Measurement of Nigerian Service Firms, African Journal of Computing & ICT Vol 8. No. 3 – September 2015.
EMRE AKYUZ., A hybrid accident analysis method to assess potential navigational contingencies: The case of ship grounding. Volume 79, November 2015, Pages 268-276. DOI: https://doi.org/10.1016/j.ssci.2015.06.019
HAUSER D., TADIKAMALLA P. The analytic hierarchy process in an uncertain environment: a simulation approach. European J. Oper. Res., 91 (1) (1996), pp. 27 of - 37. DOI: https://doi.org/10.1016/0377-2217(95)00002-X
JALAO E.R., WU T., DAN S. A stochastic AHP decision-making methodology for imprecise preferences. Inform. Sci., 270 (270) (2014), pp. 192 - 203. DOI: https://doi.org/10.1016/j.ins.2014.02.077
LÉANDRE EDGARD NDJAMBOU ; Maritime trade and isolation in West Africa: the case of the ports of Abidjan and Cotonou, 226-227 | Avril-Septembre 2004 : Afriques; P 233-258; DOI: https://doi.org/10.4000/com.555
LI Y., ZHANG H., DONG Y. The interactive process of obtaining consensus with minimum uncertain cost in group decision making. Appl. Soft Comput. , 60 ( 2017 ) , pp. 202 - 212. DOI: https://doi.org/10.1016/j.asoc.2017.06.056
LIN C., KOU G. Bayesian review of individual pairwise comparison matrices under consensus in AHP-gdm. Appl. Soft Comput. , 35 ( C ) ( 2015 ) , pp. 802 - 811. DOI: https://doi.org/10.1016/j.asoc.2015.02.041
LIPOVETSKY S. , TISHLER A. Estimation of priority range in AHP. European J. Oper. Res. 114 (1) (1999) , pp. 153 - 164. DOI: https://doi.org/10.1016/S0377-2217(98)00012-5
MARIA C. C. R. R. ALEX S. A. Application of the analytic hierarchy process (ahp) method with absolute measurement in a qualitative selection problem; Instituto Federal Fluminense, Universidade de São Paulo, 2016.
MELLO, A. F. P. Monitoring and evaluation of food recall regulations in Brazil: proposition of indicators and metrics. 185p. Rio de Janeiro, 2015. Postgraduate Dissertation Metrology for Quality and Innovation, Pontifical Catholic University - Rio de Janeiro.
PAULO CEZAR FREIRE DE MENEZES. Paraconsistent Logic Systems applied to hierarchical models for decision making: a study conducted in project management. Master's thesis, 2015, universidade santa Cecília, São Paulo.
AUTONOMOUS PORT OF COTONOU, http://www.portcotonou.com/index.php/qui-sommes-nous/presentation, 2019.
SAATY T.L. The analytic hierarchy process: planning, defining priorities, allocating resources, NY: McGrawHill,1980:437.
Saaty, T. L. (1991), "Hierarchical Analysis Method", Translation by Wainer da Silveira e Silva, McGraw-Hill, Makron, São Paulo, SP.
SAATY THOMAS L. Modern Nonlinear Equations (Dover Books on Mathematics) (English Edition) Edição Inglês | 29 mar 2012.
SAATY, T. L. Principia Mathematica decerning, Mathematical principles os decision making; Pittsburg. PA: RWS Publications, 2010.
SAATY, T. L.; VARGAS, L. G. Models, methods, concepts & applications of the analytic hierarchy process. 2ª ed. New York: Springer. 2012. DOI: https://doi.org/10.1007/978-1-4614-3597-6
TAM C.Y.M, TUMMALA V.M.R. An application of the AHP in vendor selection of a telecommunications system. The International Journal of Management Science, 2001; 29 (2):171-182. DOI: https://doi.org/10.1016/S0305-0483(00)00039-6
TIAGO CAVELAGNA, Estruturação de processo de decisão sobre modelo de gestão de serviços de água e esgoto por ahp (analytic hierarchy process), universidade federal de alfenas, 2016, Minas Geras.
VARGAS L.G. Reciprocal matrices with random coefficients. Math. Model. 3 (1) (1982) , pp. 69 – 81. DOI: https://doi.org/10.1016/0270-0255(82)90013-6
WEN-KAI K. HSUA, SHU-JUN LIANA, SHOW-HUI S. HUANG. An assessment model based on a hybrid MCDM approach for the port choice of liner carriers; Research in Transportation Business & Management; Volume 34, March 2020. DOI: https://doi.org/10.1016/j.rtbm.2019.100426
Published
Issue
Section
License
Copyright (c) 2021 Alphonse Hounsounou, Hito Braga de Moraes, Maamar El Robrini
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2021-08-30
Published 2021-10-01
Most read articles by the same author(s)
- Alphonse Hounsounou, Prof. Dr. Hito Braga de Moraes, Prof. Dr. Maamar El Robrini, Application of fuzzy logic at the Port of Cotonou (Benin / West Africa) in analysis of port logistics viability , International Journal for Innovation Education and Research: Vol. 9 No. 2 (2021): International Journal for Innovation Education and Research