Application of a Logit Model for Water well site location in fractured-bedrock aquifers in northeastern Brazil

Authors

DOI:

https://doi.org/10.31686/ijier.vol10.iss8.3854

Keywords:

Fractured-bedrock aquifer, Remote sensing, Groundwater favorability map

Abstract

Wells drilling process in fractured-bedrock aquifers is a difficult task. Extreme variations in lithology and structure features, as well productive water zones sited at preferential points make geological and geophysical investigations difficult. To contribute to the understanding of the process of groundwater zones occurrence in fractured-bedrock aquifers, this paper develops a drilling prospective model by using regression analysis, whose parameters were calibrated according to the photogeological and cartographic analysis of 113 drilling points in the states of Rio Grande do Norte, Paraíba, and Ceará. The effectiveness of the resulting model was assessed through a sample of 43 additional drillings, which were carried out aiming at the distribution of water to the communities in the semiarid region of Brazil. The obtained results indicate the model as an important tool in the drilling process, with direct implications on the logistics costs of water well site location and consequent attendance to the population that needs the water.

Downloads

Download data is not yet available.

Author Biographies

  • Yesus Emmanuel Medeiros Vieira

    Escuela MIlitar de Cadetes Jo´se maría Córdova

  • Renata Albergaria de Mello Bandeira

    Military Institute of Engineering

  • Orivalde Soares da Silva Junior

    Military Institute of Engineering

References

Bao, R., & Chen, J. (2022). Characteristics and problems of unplugged computer science curriculum for young children: Comparative and practical research based on the curriculum in four countries. International Journal for Innovation Education and Research, 10(4), 1–22. https://doi.org/10.31686/ijier.vol10.iss4.3700 DOI: https://doi.org/10.31686/ijier.vol10.iss4.3700

Cristo, H. S. de, Filho, A. S. N., Marinho de Aragão, J. W., & Saba, H. (2022). Media Bios and Artificial Intelligence: The dark side of Fake News. International Journal for Innovation Education and Research, 10(4), 23–33. https://doi.org/10.31686/ijier.vol10.iss4.3701 DOI: https://doi.org/10.31686/ijier.vol10.iss4.3701

Abuzied, S. M., Alrefaee, H. A. (2017). Mapping of groundwater prospective zones integrating remote sensing, geographic information systems and geophysical techniques in El-Qaà Plain area, Egypt. Hydrogeology Journal, 25, 2067-2088. DOI: https://doi.org/10.1007/s10040-017-1603-3

Abuzied, S. M.; Ibrahim, S. K.; Kaiser, M. F.; Seleem, T. A. (2016). Application of remote sensing and spatial data integrations for mapping porphyry copper zones in Nuweiba area, Egypt. International Journal of Signal Processing Systems, 4 (2), 102–108. DOI: https://doi.org/10.12720/ijsps.4.2.102-108

Adetoyinbo, A. A.; Adelegan, F. T.; Bello, A. K. (2015) Environmental impact assessment of the potability of water from bore-hole, hand dug well and stream at Itagunmodi gold deposits Southwestern, Nigeria using FORTRAN algorithm for monitoring leachates and interpreting physicochemical data of contaminants in groundwater. International Journal of Water Sources and Environmental Engineering, 7 (1), 1–6.

Aziz, N. A.; Hasan, R. H.; Abdulrazzaq, Z. T. (2018). Optimum Site Selection for Groundwater wells using Integration between GIS and Hydrogeophysical Data. Engineering and Technology Journal, v. 36, Part A, 6, p. 596-602. DOI: https://doi.org/10.30684/etj.36.6A.1

Binley, A.; Hubbard, S. S.; Huisman, J. A.; Revil A.; Robinson, D. A.; Singha, K.; Slater, L. D. (2015). The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resources Research, 51, 3837–3866. DOI: https://doi.org/10.1002/2015WR017016

Brandão, R. L.; Gomes, F. E. M. (2003). Técnicas de geoprocessamento e sensoriamento remoto aplicadas na avaliação de potencial hidrogeológico da Folha Irauçuba. Revista de Geologia, 16 (1).

Conceição, R. A. C.; Silva, A. Q. (2013). Extração automática de lineamentos utilizando imagens SRTM, Landsat ETM+ e ALOS PALSAR na região de Nobres, MT. In: XVI SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO– SBSR, Foz do Iguaçu, PR.

Cunha, A. P.; Marchezini, V.; Lindoso, D.; Saito, S.; Alvará, R. C. (2019). The challenges of Consolidation of a Drought-Related Disaster Risk Warning System to Brazil. Sustentabilidade em Debate,10, 43-76. DOI: https://doi.org/10.18472/SustDeb.v10n1.2019.19380

Das, S. Delineation of groundwater potential zone in hard rock terrain in Gangajalghati block, Bankura district, India using remote sensing and GIS techniques. (2017). Modeling Earth Systems and Environment, 3 (4), 1589–1599. DOI: https://doi.org/10.1007/s40808-017-0396-7

Elis, V. R.; Bondioli, A.; Ustra, A. T.; Carlos, I. M.; Pozzo, H. Â. P. D. (2019). Resistivity imaging for identification of fracture zones in crystalline bedrock in Brazil. Sustainable Water Resources Management, 5 (3), 1089–1101. DOI: https://doi.org/10.1007/s40899-018-0287-8

Hao, Z.; Hao, F.; Singh, V. P.; Ouyang, W.; Cheng, H. (2017). An integrated package for drought monitoring, prediction and analysis to aid drought modeling and assessment. Environmental Modelling and Software, 91, 199-209. DOI: https://doi.org/10.1016/j.envsoft.2017.02.008

EMBRAPA (Brasil). (1979). Serviço Nacional de Levantamento e Conservação de Solos. In: REUNIÃO TÉCNICA DE LEVANTAMENTO DE SOLOS, 10., 1979, Rio de Janeiro. Súmula. Rio de Janeiro: EMBRAPA.

ESRI GIS and Mapping Software. Disponível em: http://www.esri.com/ . Acesso em: 12 abr 2022.

EXÉRCITO BRASILEIRO. Disponível em: https: //www. eb.mil.br/web/noticias/noticiario-doexercito/-/asset_publisher/ MjaG93KcunQI/content/operação semiarido-exercito-perfura-pocos-no-nordeste. Acesso em: 20 dez 2018.

Feitosa, Fernando A. C. (2008). Hidrogeologia: conceitos e aplicações/organização e coordenação científica. 3ª. ed. Rio de Janeiro: CPRM: LABHID,2008. 812 p.

Gallas, J. D. F.; Giardin, A. (2016). Eletrorresistividade na prospecção de aquíferos fraturados. Águas subterrrâneas, 30(1), 119-138. DOI: https://doi.org/10.14295/ras.v30i1.28496

Gonçalves, V. G.; Giampá, C. E. Q. Águas subterrâneas e poços tubulares profundos. (2009). Engenharia Sanitaria e Ambiental, v. 14, 3, IV-IV. DOI: https://doi.org/10.1590/S1413-41522009000300002

Gupta, R. P. (2003). Remote Sensing Geology, 2ªed., Springer, Springer-Verlag Berlin, Heidelberg, Germany, 665 p.

INPE. Disponível em: www.webmapit.com.br/inpe/topo data /. Acesso em: 17 mar 2022.

Keary, P.; Brooks, M.; Hill, I. Geofísica de Exploração. Editora Oficina de Textos, 438 p., 2009.

NASA. Disponível em: www2.jpl.nasa.gov/srtm/. Acesso em: 12 mar 2019.

Madrucci, V.; Taioli, F., De Araújo, C.C. (2008) Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, Sao Paulo state, Brazil. Journal of Hydrology, 357, 3, 153–173. DOI: https://doi.org/10.1016/j.jhydrol.2008.03.026

Martorana, R.; Capizzi, P.; D’alessandro, A.; Luzio, D. (2017). Comparison of different sets of array 245 configurations for multichannel 2D ERT acquisition. Journal of Applied Geophysics, v. 137, p. 34 – 48, 2017. DOI: https://doi.org/10.1016/j.jappgeo.2016.12.012

Medeiros, V. C.; Amaral, C. A.; Rocha, D. E. G. A.; Santos, R. B. (2005). PROGRAMA GEOLOGIA DO BRASIL - PGB. SOUSA. FOLHA SB.24-Z-A. ESTADOS DA PARAÍBA, RIO GRANDE DO NORTE E CEARÁ. Mapa Geológico. Recife: CPRM, 1 mapa, color., 66cm x 108cm. Escala 1:250.000.

Mohamaden, M. I. I.; El-Sayed, H. M.; Mansour, S. A. (2017). Combined application of electrical resistivity and GIS for groundwater exploration and subsurface mapping at northeast Qattara Depression, Western Desert, Egypt. Egyptian Journal of Basic and Applied Sciences, 4 (1), 80–88. DOI: https://doi.org/10.1016/j.ejbas.2016.10.003

Nag, S. (2016). Delineation of Groundwater Potential Zones in Hard Rock Terrain in Kashipur Block, Purulia District, West Bengal, using Geospatial Techniques. International Journal of Waste Resources, 6. DOI: https://doi.org/10.4172/2252-5211.1000201

Nam, W. H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D. A. (2015). Drought hazard assessment in the context of climate change for South Korea. Agricultural Water Management, 160, 106-117. DOI: https://doi.org/10.1016/j.agwat.2015.06.029

Nazaruddin, D. A.; Amiruzan, Z. S.; Hussin, H.; Jafar, M. T. M. (2017). Integrated geological and multi-electrode resistivity surveys for groundwater investigation in Kampung Rahmat village and its vicinity, Jeli district, Kelantan, Malaysia. Journal of Applied Geophysics, 138, 23–32. DOI: https://doi.org/10.1016/j.jappgeo.2017.01.012

Ortega-Gaucin, D.; López Pérez M.; Arreguín, C. F. I. (2016). Drought Risk Management in Mexico: Progress and Challenges. International Journal of Safety and Security Engineering , 6 (2), 161-170. DOI: https://doi.org/10.2495/SAFE-V6-N2-161-170

Oldenburg, D.W.; Li, Y. (1999). Estimating depth of investigation in DC resistivity and IP surveys. Geophysics, 64, 2, p. 403-416. DOI: https://doi.org/10.1190/1.1444545

Redhaounia, B.; Bedir, M.; Gabtni, H.; Ilondo, B.; Dhaoui, M.; Chabaane, A.; Khomsi, S. (2016). Hydro-geophysical characterization for groundwater resources potential of fractured limestone reservoirs in Amdoun Monts (North-western Tunisia). Journal of Applied Geophysics, 128, 150–162. DOI: https://doi.org/10.1016/j.jappgeo.2016.03.005

Silva, M. A; Moreira, C. A.; Borssatto, K., Ilha, L. M.; Santos, S. F. (2018). Geophysical prospection in tin mineral occurrence associated to greisen in granite São Sepé (RS). REM - International Engineering Journal, 71, n. 2, 183-189. DOI: https://doi.org/10.1590/0370-44672017710098

Sa, H. S.; Elis, V. R. (2016). Aplicação de imageamento elétrico multi-eletrodos para auxílio na locação de perfuração de poços tubulares: estudo de casos em aquíferos fraturados. In: XIX CONGRESSO BRASILEIRO DE ÁGUAS SUBTERRÂNEAS, Campinas, p 2-11.

Silva, C. D. A.; Rodrigues, R.S.; Lisoa, L.H.D. Locações de poços em ambiente cristalino: da análise estrutural aos dados de eletroresistividade. estudo de caso nos municípios de São Gonçalo do Amarante e Aratuba, Ceará. Anais do xx congresso brasileiro de águas subterrâneas, Campinas, 2018.

Silva, M. B.; Maia, R. B. (2017). Caracterização Morfoestrutural do Alto Curso da Bacia Hidrográfica do Rio Jaguaribe, Ceará-Brasil. Revista Brasileira de Geomorfologia, 18, 3. DOI: https://doi.org/10.20502/rbg.v18i3.1083

Singh, K. K. K., Bharti, A. K.; PAL, S. K.; Prakash, A.; Saurabh, K. R.; Singh, P. K. (2019). Delineation of fracture zone for groundwater using combined inversion technique. Environmental Earth Sciences, 78 (4), 110. DOI: https://doi.org/10.1007/s12665-019-8072-z

Sivaramakrishnan, J.; Asokan, A.; Sooryanarayana, K. R.; Hegde, S. S.; Benjamin, J. (2015). Occurrence of Ground Water in Hard Rock Under Distinct Geological Setup. Aquatic Procedia, 4, 706–712. DOI: https://doi.org/10.1016/j.aqpro.2015.02.091

Zar, J. (1999). Biostatistical analysis. 4. Ed. Upper Saddle River – New Jersey: Prentice Hall, 663 p.

Downloads

Published

2022-08-01

How to Cite

Vieira, Y. E. M., Renata Albergaria de Mello Bandeira, & Silva Junior, O. S. da. (2022). Application of a Logit Model for Water well site location in fractured-bedrock aquifers in northeastern Brazil. International Journal for Innovation Education and Research, 10(8), 33-52. https://doi.org/10.31686/ijier.vol10.iss8.3854
Received 2022-07-04
Accepted 2022-07-16
Published 2022-08-01