Molecular Modeling with Augmented Reality (MMAR)
An Educational Web System for the Learning of Molecular Structures
DOI:
https://doi.org/10.31686/ijier.vol6.iss10.1178Keywords:
Molecular Modeling, Augmented Reality, Teaching and Learning, Web SystemAbstract
Learning about molecular structures often becomes abstruse, due to its complex compositions, being aggravated by the restricted interactivity provided by the software commonly used. This difficulty can also be attached to the fact that most of the students do not present the necessary knowledge to work with biomolecular systems, affecting also the motivation in the object of study. In this context, the objective of this work is to analyze the influences related to interactivity, usability and motivation, provided by a web system called MMAR (Molecular Modeling with Augmented Reality), designed to support the learning of three-dimensional (3D) molecular structures. The system was applied to twenty-five students in the Chemistry discipline, from a technical course in a public school from basic education in Brazil. The results show that it was possible to assist students in the gain of knowledge, while simultaneously allowing them to enjoy themselves, providing unconventional learning, by increasing attractiveness, curiosity, attention, enthusiasm and relevance of such a complex subject in Chemistry.
References
A. E. R. Mazzuco, “MMAR: Sistema Web para Modelagem Molecular Tridimensional Utilizando Realidade Aumentada”. 2017. 183 f. Dissertação (Mestrado em Tecnologias Educacionais em Rede) – Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil, 2017.
A. E. R. Mazzuco, A. L. Krassmann, D. S. Garcia, and G. Bernardi, “Sistema Web para Modelagem Molecular Tridimensional Utilizando Realidade Aumentada como Recurso Inovador de Ensino e de Democratização da Informação Biotecnológica em Rede”, RENOTE - Revista Novas Tecnologias na Educação, 16(1), Porto Alegre, Brazil, 2018. DOI: https://doi.org/10.22456/1679-1916.86009
A. Maiti, A. Kist, M. Smith, “Key aspects of integrating augmented reality tools into peer-to-peer remote laboratory user interfaces”, IEEE 13th International Conference on Remote Engineering and Virtual Instrumentation (REV), Madrid, Spain, 2016, pp. 16-23. DOI: https://doi.org/10.1109/REV.2016.7444434
A. R. Leach, “Molecular Modelling: Principles and Applications”, Prentice Hall, 2001, 744 p.
C. S. Rezende, “Modelo de Avaliação de Qualidade de Software Educacional para o Ensino de Ciências”, 2013. 131 p. Dissertação de Mestrado (Programa de Pós-Graduação em Ensino de Ciências) – Universidade Federal de Itajubá, Itajubá, Brazil, 2013.
E. H. V. Zee, D. Roberts, “Making science teaching and learning visible through web-based ‘Snapshots of Practice’”, Journal of Science Teacher Education, 17(4), 2006, pp. 367-388. DOI: https://doi.org/10.1007/s10972-006-9027-2
H. K. Wu, S. W. Y. Lee, H. Y. Chang, and J. C. Liang, “Current status, opportunities and challenges of augmented reality in education”, Computers & Education, UK, Oxford, v. 62, 2013, pp. 41-49. DOI: https://doi.org/10.1016/j.compedu.2012.10.024
H. Kaufmann, M. Papp, “Learning objects for education with augmented reality”. European Distance and ELearning Network, Vienna, Austria, 2006, pp. 160-165.
J. A. Frank, and V. Kapila, “Towards Teleoperation-based Interactive Learning of Robot Kinematics using a Mobile Augmented Reality Interface on a Tablet”, IEEE Indian Control Conference (ICC), Hyderabad, Indian, 2016, pp. 385-392. DOI: https://doi.org/10.1109/INDIANCC.2016.7441163
J. Bode, “Integration of 3D Visualization and Molecular Interactions Using Molecular Modeling within the Context of Drug Development Against Malaria Disease for Learning in Chemistry Education”, International Journal of Science Education (IJSE). Utrecht University, Netherlands, 2016.
J. D. Gobert, L. O’Dwyer, P. Horwitz, B. C. Buckley, S. T. Levy, and U. Wilensky, “Examining the Relationship Between Students’ Understanding of the Nature of Models and Conceptual Learning in Biology, Physics, and Chemistry”, International Journal of Science Education, 33(5), 2011, pp. 653-684. DOI: https://doi.org/10.1080/09500691003720671
J. F. Cadavieco, M. F. Goulão, and M. A. G. Tamargo, “Melhorar a atratividade da informação através do uso da realidade aumentada”, Perspectivas em Ciência da Informação, 9(1), 2017, pp. 37-50.
J. Nielsen, “Usability Engineering”, Boston: Academic Press, NY, 1993. 358 p.J. Zhang, Y. T. Sung, K. E. Chang, “Using a Mobile Digital Armillary Sphere (MDAS) in Astronomical Observation for Primary School Students”, World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education, 2011, pp. 2632-2641.
K. Harrison, J. P. Bowen, and A. M. Bowen, “Electronic visualisation in chemistry: From alchemy to art”, Conference Proceedings, Electronic Workshops in Computing (eWiC), British Computer Society, London, England, 2013, pp. 267-274. DOI: https://doi.org/10.14236/ewic/EVA2013.56
K. Lee, “Augmented Reality in Education and Training”, TechTrends: Linking Research and Practice to Improve Learning, 56(2), 2012, pp. 13-21. DOI: https://doi.org/10.1007/s11528-012-0559-3
L. Farias, R. Dantas, and A. Burlamaqui, “Educ-AR: A tool for assist the creation of augmented reality content for education”, IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), Ottawa, Canada, 2011, pp. 1-5. DOI: https://doi.org/10.1109/VECIMS.2011.6053850
L. Y. Badi’Abdul-Wahid, D. Rajan, H. Feng, E. Darve, D. Thain, and J. A. Izaguirre, “Folding proteins at 500 ns/hour with Work Queue”, 8th IEEE International Conference on E-Science (e-Science), Chicago, United States of America, 2012, pp. 1-8. DOI: https://doi.org/10.1109/eScience.2012.6404429
M. Essabbah, S. Otmane, and M. Mallem, “3D molecular modeling: from theory to applications”, IEEE Conference on Human System Interactions, Cracow, Poland, 2008, pp. 350-355. DOI: https://doi.org/10.1109/HSI.2008.4581462
M. M. Silva, R. A. Roberto, V. Teichrieb, and P. S. Cavalcante, “Towards the Development of Guidelines for Educational Evaluation of Augmented Reality Tools”, IEEE Virtual Reality Workshop on K-12 Embodied Learning through Virtual & Augmented Reality (KELVAR), 00(undefined), 2016, pp. 17-21. DOI: https://doi.org/10.1109/KELVAR.2016.7563677
M. Mihelj, D. Novak, S. Beguš, “Virtual Reality Technology and Applications”. Springer Science & Business Media. 1 ed. Springer Netherlands, 2013. 241 p. DOI: https://doi.org/10.1007/978-94-007-6910-6
M. Rahman, V. Deep, and S. Rahman, “ICT and internet of things for creating smart learning environment for students at education institutes in India”, Cloud System and Big Data Engineering, 6th IEEE International Conference, 2016, pp. 701-704. DOI: https://doi.org/10.1109/CONFLUENCE.2016.7508209
M. S. Silveira, M. L. F. Carneiro, “Diretrizes para a Avaliação da Usabilidade de Objetos de Aprendizagem”, Simpósio Brasileiro de Informática na Educação (SBIE). Anais. Rio de Janeiro, Brazil, 23(1), 2012.
N. Iwane, C. Gao, and M. Yoshida, “Building an experimental system to examine a method for supporting verbal explanation”, 13th International Conference on Remote Engineering and Virtual Instrumentation (REV), Madrid, Spain, 2016, pp. 347-349. DOI: https://doi.org/10.1109/REV.2016.7444498
N. Lau, A. Oxley, M. Y. Nayan, “An augmented reality tool to aid understanding of protein loop configuration”, IEEE International Conference on Computer & Information Science (ICCIS), Kuala Lumpur, Malaysia, 2012, pp. 500-505. DOI: https://doi.org/10.1109/ICCISci.2012.6297297
N. Liberati, “Augmented ‘Ouch!’. How to create intersubjective augmented objects into which we can bump”, IEEE International Symposium on Mixed and Augmented Reality - Media, Art, Social Science, Humanities and Design (ISMAR-MASH'D), 2015, pp. 21-26. DOI: https://doi.org/10.1109/ISMAR-MASHD.2015.14
P. Awasthi, and P. Sharma, “Docking Study of Synthesized Juvenile Hormone Analogues as an Insect Growth Regulators”, 14th IEEE International Conference on Computer Modelling and Simulation (UKSim), Cambridge, England, 2012, pp. 113-116.P. Maier, G. Klinker, “Evaluation of an augmented-reality-based 3D user interface to enhance the 3D-understanding of molecular chemistry”, 5th International Conference on Computer Supported Education (CSEDU), 2013a, pp. 294-302.
P. Maier, G. Klinker, “Augmented chemical reactions - An augmented reality tool to support chemistry teaching”, IEEE 2nd Experiment@ International Conference, Coimbra, Portugal, 2013b, pp. 164-165. DOI: https://doi.org/10.1109/ExpAt.2013.6703055
P. Maier, G. Klinker, M. TöNnis, “Augmented Reality for teaching spatial relations”, Conference of the International Journal of Arts & Sciences, Toronto, Canada, 2009, pp. 1-8.
R. Likert, “A technique for the measurement of attitudes”, Archives of Psychology, v. 140, 1932, pp. 1-55.
R. Savi, “Avaliação de Jogos para a Disseminação do Conhecimento”, 2011. 236 p. Tese de doutorado (Programa de Pós-Graduação em Engenharia e Gestão do Conhecimento) – Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil, 2011.
S. C. Bronack, “The role of immersive media in online education”, Journal Continuing Higher Education, 59(2), 2011, pp. 113-117. DOI: https://doi.org/10.1080/07377363.2011.583186
S. H. Bokhari, M. A. Glaser, H. F. Jordan, Y. Lansac, J. R. Sauer, and B. Van Zeghbroeck, “Parallelizing a DNA Simulation Code for the Cray MTA-2”, IEEE Computer Society Bioinformatics Conference, 2002, pp. 291-302.
S. Nickels, H. Sminia, S. C. Mueller, B. Kools, A. K. Dehof, H. P. Lenhof, and A. Hildebrandt, “ProteinScanAR - An augmented reality web application for high school education in biomolecular life sciences”, IEEE 16th International Conference on Information Visualisation (IV), Montpellier, France, 2012, pp. 578-583. DOI: https://doi.org/10.1109/IV.2012.97
S. Singhal, S. Bagga, P. Goyal, and V. Saxena, “Augmented Chemistry: Interactive Education System”, International Journal of Computer Applications, 49(15), 2012, pp. 1-5. DOI: https://doi.org/10.5120/7700-1041
V. C. Vijay, M. Lees, P. Chima, and C. Chapman, “Augmented Reality Environment for Engineering Distance Leaners to Acquire Practical Skills”, 13th International Conference on Remote Engineering and Virtual Instrumentation (REV), 2016, pp. 215-223. DOI: https://doi.org/10.1109/REV.2016.7444468
W. G. Zikmund, “Business research methods”, 5.ed. Fort Worth, TX: Dryden, 2000. 829 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Alex Eder da Rocha Mazzuco, Aliane Loureiro Krassmann, Denis da Silva Garcia, Giliane Bernardi
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Most read articles by the same author(s)
- Tito Armando Rossi Filho, Aliane Loureiro Krassmann, Liane Margarida Rockenbach Tarouco, Patricia Alejandra Behar, An OWL-Based Ontology to Represent Interactions of Students in Educational Virtual Worlds , International Journal for Innovation Education and Research: Vol. 5 No. 7 (2017): International Journal for Innovation Education and Research
- Aliane Loureiro Krassmann, Tito Armando Rossi Filho, Liane Margarida Rockenbach Tarouco, Magda Bercht, Initial Perception of Virtual World Users , International Journal for Innovation Education and Research: Vol. 5 No. 5 (2017): International Journal for Innovation Education and Research
- Aliane Loureiro Krassmann, Fabrício Herpich, Magda Bercht, Sílvio Cesar Cazella, Analyzing trends in academic papers about ubiquitous virtual worlds in education using text mining , International Journal for Innovation Education and Research: Vol. 5 No. 4 (2017): International Journal for Innovation Education and Research