Applications of Continuous Fractions in Orthogonal Polynomials
DOI:
https://doi.org/10.31686/ijier.vol6.iss12.1245Keywords:
Jacobi, irrational numbers, infinite sequenceAbstract
Several applications of continuous fractions are restricted to theoretical studies, such as problems associated with the approximation of functions, determination of rational and irrational numbers, applications in physics in determining the resistance of electric circuits and integral equations and in several other areas of mathematics. This work aimed to study the results that open the way for the connection of continuous fractions with the orthogonal polynomials. As support, we will study the general case, where the applications of the Wallis formulas in a monolithic orthogonal polynomial, which generates a continuous fraction of the Jacobi type. It will be allowed applications with relations of recurrence of three terms in the polynomials of Tchebyshev and Legendre, through the results found, establishing connection between them with the continuous fractions. And finally, will be presented the "Number of gold", that is an application of this theory.
References
[2] ANDRADE, E. X. L.; BRACCIALI, C. F. Polinômios Ortogonais e Similares: Propriedades e Aplicações. Apostila Versão, v. 2, 2008.
[3] ARFKEN, G.; PAN, Y. K. Mathematical methods for physicists. American Journal of Physics, v. 39, n. 4, p. 461-461, 1971.
[4] AZEVEDO, N. C. O número de ouro e construções geométricas. 2013. 46 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) - Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, 2013. Disponível em: <https://repositorio.bc.ufg.br/tede/handle/tde/2948>
[5] BISTAFFA, A. M. S. Polinômios Ortogonais e Frações Contínuas. ANAIS DO ENIC, v. 1, n. 4, 2015. Disponível em: <http://anaisonline.uems.br/index.php/enic/article/view/1835/1745>
[6] BONFIM, D. D. Frações contínuas com aplicações. 2014. 75f. Dissertação (Mestrado Profissional em Matemática – PROFMAT) – Universidade Federal do Tocantins, Palmas. 2014. Disponível em: <http://bit.profmat-sbm.org.br/xmlui/bitstream/handle/123456789/1140/2012_00920_DELFIM_DIAS_BONFIM.pdf?sequence=1>
[7] BOYER, C. B.; MERZBACH, U. C. História da matemática. [rev.]. São Paulo: Edgard Blücher LTDA, 1996.
[8] BUTKOV, E. Mathematical Physics. Estados Unidos: Addison Wesley, 1968. 735p.
[9] FERRER, J. V. O número de ouro na arte, arquitetura e natureza: beleza e harmonia. 2005. Disponível em: <https://www.ucb.br/sites/100/103/TCC/22005/JoseaneVieiraFerrer.pdf>
[10] HUNTLEY, H. E. A Divina Proporção: um Ensaio sobre a Beleza na Matemática. Brasília: Universidade de Brasília, 1985. 178p.
[11] JÚNIOR, D. P. F.; LIMA, F. M. S. Usando frações continuas para resolver um problema de eletricidade de forma criativa. Física na Escola, v. 7, n. 1, p. 26-29, 2006. Disponível em: <http://www1.fisica.org.br/fne/edicoes/category/21-volume-07-n-1-maio?download=173:usando-fracoes-continuas-para-resolver-um-problema-de-eletricidade-de-forma-criativa.>
[12] LIMA, M. A. F. Frações contínuas que correspondem a séries de potências em dois pontos. 2010. 71 f. Dissertação (mestrado) - Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto. 2010. Disponível em: <http://hdl.handle.net/11449/94233>.
[13] LIVIO, M. The golden ratio: The story of phi, the world's most astonishing number. New York: Broadway Books, 2008. 293p.
[14] MARTINS, A. S. Interpretação eletrostática e zeros de polinômios. 2005. 78 f. Dissertação (mestrado) - Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto. 2005. Disponível em: <http://hdl.handle.net/11449/94283>.
[15] MELLO, M. V. Zeros de Polinômios Ortogonais de Sobolev-Jacobi e Sobolev-Laguerre. 2008. 95 f. Dissertação (mestrado) - Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto. 2008. Disponível em: <https://www.dcce.ibilce.unesp.br/pos/webfacil/publico/File/mdl_alunos_diss_406_1.pdf>
[16] MINAYO, M. C. S. O desafio do conhecimento: pesquisas qualitativas em saúde. 9 ed. São Paulo: Hucitec; 2006. 406 p.
[17] NASCIMENTO, A. M. Frações contínuas e aplicações no ensino médio. 2013. 66 f. Dissertação (Mestrado Profissional em Matemática em Rede Nacional) – Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, 2013. Disponível em: < http://repositorio.bc.ufg.br/tede/handle/tede/3678>
[18] NODARSE, R. A. Polinomios hipergeométricos clásicos y q-polinomios. Universidad de Zaragoza, 2003.
[19] PACCI, D. C.; RODRIGUES, C. T. Sequência de Fibonacci. Universidade Estadual de Campinas – Instituto de Matemática e Estatística (IME), 2013. Disponível em: <http://www.ime.unicamp.br/~ftorres/ENSINO/MONOGRAFIAS/DC_M1_FM_2013.pdf>
[20] PADOVAN; R. Proportion. New York: Taylor and Francis. 1999. 400p.
[21] PAIXÃO, J. C. Fracções contínuas no ensino pré-universitário. 2011. 73 f. Dissertação (Mestrado em matemática para professores) – Instituto de Ciências e Matemática, Universidade de Lisboa, Lisboa, 2011. Disponível em: <http://repositorio.ul.pt/bitstream/10451/7734/1/ulfc102520_tm_Jo%c3%a3o_Paix%c3%a3o.pdf>
[22] PERSAUD-SHARMA, D.; O'LEARY, J. P. Fibonacci Series, Golden Proportions, and the Human Biology. Austin J Surg. v. 2, n. 5, p. 1 – 7, 2015. Disponível em: <http://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=1026&context=com_facpub>
[23] SZEGO, G. Orthogonal polynomials. 4. ed. In: Colloquium publications/American mathematical society. Providence: [s.n.], v. 23. 1975.
[24] XIE, Z. The golden ratio and super central configurations of the n-body problem. Journal of Differential Equations, v. 251, n. 1, p. 58-72, 2011. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0022039611001094>
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Ana Cláudia Marassá Roza Boso, Luís Roberto Almeida Gabriel Filho, Camila Pires Cremasco Gabriel, Bruno César Góes, Fernando Ferrari Putti
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Most read articles by the same author(s)
- Fernando Ferrari Putti, BRUNO CÉSAR GÓES, VINÍCIUS PALÁCIO, BEATRIZ RODGRIGUES DE GODOY, DIOGO DE LUCCA SARTORI, Multivariate Analysis of Brazilian Agricultural Production , International Journal for Innovation Education and Research: Vol. 5 No. 12 (2017): International Journal for Innovation Education and Research