Efficient use of the Generators for the Environmental Economic Dispatch from the energy system, including solar photovoltaic generation
DOI:
https://doi.org/10.31686/ijier.vol9.iss7.3211Keywords:
Economic Emission Load Dispatch, Power Plants, Photovoltaic, Ant Lion AlgorithmAbstract
The classic Economic Dispatch (ED) problem considers only the cost of power generation by thermal generators, often disregarding the safety parameters of the electrical network, environmental costs and especially the importance of predictive maintenance of the generators, when considering environmental costs in the optimization of ED this becomes a multi-objective problem Environmental Economic Dispatch (EED). Considering the global pressure to reduce emissions of pollutants in the atmosphere and environmental sustainability, incorporating the generation of Renewable Energies (RE) or Green Energy in the electricity grid is indispensable. Solar energy is becoming an important part of the power generation portfolio in many regions due to the fast decline in its costs and political incentives that favor the generation of clean energy sources. This article uses the Ant Lion Optimizer (ALO) method to solve the problem and EED restricted to the grid in a hybrid system (thermoelectric and photovoltaic). The results of the optimization problem were simulated in MATLAB. This research included 01 thermoelectric with 06 generators and 13 solar plants.
References
P. Yao e H. Wang, “Dynamic Adaptive Ant Lion Optimizer applied to route planning for unmanned aerial vehicle”, Soft Comput., vol. 21, no 18, p. 5475–5488, 2017. DOI: https://doi.org/10.1007/s00500-016-2138-6
W. Yamany, A. Tharwat, M. F. Hassanin, T. Gaber, A. E. Hassanien, e T.-H. Kim, “A new multi-layer perceptrons trainer based on ant lion optimization algorithm”, in 2015 Fourth international conference on information science and industrial applications (ISI), 2015, p. 40–45. DOI: https://doi.org/10.1109/ISI.2015.9
N. A. Khan et al., “Combined emission economic dispatch of power system including solar photo voltaic generation”, Energy Convers. Manag., vol. 92, p. 82–91, 2015. DOI: https://doi.org/10.1016/j.enconman.2014.12.029
A. Bhattacharya e P. K. Chattopadhyay, “Solving economic emission load dispatch problems using hybrid differential evolution”, Appl. Soft Comput., vol. 11, no 2, p. 2526–2537, 2011. DOI: https://doi.org/10.1016/j.asoc.2010.09.008
K. Bhattacharjee, A. Bhattacharya, e S. Halder nee Dey, “Solution of Economic Emission Load Dispatch problems of power systems by Real Coded Chemical Reaction algorithm”, Int. J. Electr. Power Energy Syst., vol. 59, p. 176–187, jul. 2014, doi: 10.1016/j.ijepes.2014.02.006. DOI: https://doi.org/10.1016/j.ijepes.2014.02.006
C. R. C. Rodríguez e G. M. Jannuzzi, “Mecanismos regulatórios, tarifários e econômicos na geração distribuída: o caso dos sistemas fotovoltaicos conectados à rede”, Universidade Estadual Camp. Camp., 2002.
M. H. R. Nascimento, M. V. A. Nunes, J. L. M. Rodríguez, J. C. Leite, e J. A. B. Junior, “New solution for resolution of the Economic Load Dispatch by different mathematical optimization methods turning off the less efficient generators”, J. Eng. Tecnol. Ind. Apl., vol. 3, p. 10, 2017. DOI: https://doi.org/10.5935/2447-0228.20170061
F. RODRIGUES, “Programação da contratação de energia considerando geração distribuída no novo modelo do setor elétrico brasileiro”, Rio Jan. UFRJ, 2006. DOI: https://doi.org/10.1590/S0103-17592007000300008
A. J. Wood, B. F. Wollenberg, e G. B. Sheblé, Power generation, operation, and control. John Wiley & Sons, 2013.
C.-L. Chiang, “Genetic-based algorithm for power economic load dispatch”, IET Gener. Transm. Distrib., vol. 1, no 2, p. 261–269, 2007. DOI: https://doi.org/10.1049/iet-gtd:20060130
D. N. Jeyakumar, T. Jayabarathi, e T. Raghunathan, “Particle swarm optimization for various types of economic dispatch problems”, Int. J. Electr. Power Energy Syst., vol. 28, no 1, p. 36–42, 2006. DOI: https://doi.org/10.1016/j.ijepes.2005.09.004
K. Y. Lee, A. Sode-Yome, e J. H. Park, “Adaptive Hopfield neural networks for economic load dispatch”, IEEE Trans. Power Syst., vol. 13, no 2, p. 519–526, 1998. DOI: https://doi.org/10.1109/59.667377
Y.-M. Park, J.-R. Won, e J.-B. Park, “A new approach to economic load dispatch based on improved evolutionary programming”, Eng. Intell. Syst. Electr. Eng. Commun., vol. 6, no 2, p. 103–110, 1998.
A. H. Mantawy, S. A. Soliman, e M. E. El-Hawary, “A new tabu search algorithm for the long-term hydro scheduling problem”, in LESCOPE’02. 2002 Large Engineering Systems Conference on Power Engineering. Conference Proceedings, 2002, p. 29–34.
M. T. Brown e S. Ulgiati, “Emergy evaluations and environmental loading of electricity production systems”, J. Clean. Prod., vol. 10, no 4, p. 321–334, 2002. DOI: https://doi.org/10.1016/S0959-6526(01)00043-9
A. I. S. Kumar, K. Dhanushkodi, J. J. Kumar, e C. K. C. Paul, “Particle swarm optimization solution to emission and economic dispatch problem”, in TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, 2003, vol. 1, p. 435–439.
Z. Bo e C. Yi-Jia, “Multiple objective particle swarm optimization technique for economic load dispatch”, J. Zhejiang Univ.-Sci. A, vol. 6, no 5, p. 420–427, 2005. DOI: https://doi.org/10.1631/jzus.2005.A0420
M. A. Rufino, J. S. Siqueira, e A. O. Araújo, “Gestão ambiental: uma análise dos custos das empresas distribuidoras de energia elétrica”, Rev. Contab. UFBA, vol. 9, no 3, 2015. DOI: https://doi.org/10.9771/rcufba.v9i3.12558
T. de Fátima Araújo e W. Uturbey, “Performance assessment of PSO, DE and hybrid PSO–DE algorithms when applied to the dispatch of generation and demand”, Int. J. Electr. Power Energy Syst., vol. 47, p. 205–217, 2013. DOI: https://doi.org/10.1016/j.ijepes.2012.11.002
T. O. Ting, M. V. C. Rao, e C. K. Loo, “A novel approach for unit commitment problem via an effective hybrid particle swarm optimization”, IEEE Trans. Power Syst., vol. 21, no 1, p. 411–418, 2006. DOI: https://doi.org/10.1109/TPWRS.2005.860907
A. Y. Saber, “Economic dispatch using particle swarm optimization with bacterial foraging effect”, Int. J. Electr. Power Energy Syst., vol. 34, no 1, p. 38–46, 2012. DOI: https://doi.org/10.1016/j.ijepes.2011.09.003
F. S. Lobato, “Multi-objective optimization to engineering system design”, PhD Thesis, Tese, Escola de Engenharia Mecânica, Universidade Federal de Uberlândia, Brasil, 2008.
S. Y. Lim, M. Montakhab, e H. Nouri, “Economic dispatch of power system using particle swarm optimization with constriction factor”, Int. J. Innov. Energy Syst. Power, vol. 4, no 2, 2009.
Y. Sonmez, “Multi-objective environmental/economic dispatch solution with penalty factor using Artificial Bee Colony algorithm”, Sci. Res. Essays, vol. 6, no 13, p. 2824–2831, 2011.
J. de A. B. Júnior, M. V. A. Nunes, M. H. R. Nascimento, J. L. M. Rodríguez, e J. C. Leite, “Solution to economic emission load dispatch by simulated annealing: case study”, Electr. Eng., vol. 100, no 2, p. 749–761, 2018. DOI: https://doi.org/10.1007/s00202-017-0544-0
M. H. R. Nascimento, M. V. A. Nunes, J. L. M. Rodríguez, e J. C. Leite, “A new solution to the economical load dispatch of power plants and optimization using differential evolution”, Electr. Eng., vol. 99, no 2, p. 561–571, 2017. DOI: https://doi.org/10.1007/s00202-016-0385-2
M. Basu, “Economic environmental dispatch using multi-objective differential evolution”, Appl. Soft Comput., vol. 11, no 2, p. 2845–2853, 2011. DOI: https://doi.org/10.1016/j.asoc.2010.11.014
A. A. El Ela, M. A. Abido, e S. R. Spea, “Differential evolution algorithm for emission constrained economic power dispatch problem”, Electr. Power Syst. Res., vol. 80, no 10, p. 1286–1292, 2010. DOI: https://doi.org/10.1016/j.epsr.2010.04.011
L. H. Wu, Y. N. Wang, X. F. Yuan, e S. W. Zhou, “Environmental/economic power dispatch problem using multi-objective differential evolution algorithm”, Electr. Power Syst. Res., vol. 80, no 9, p. 1171–1181, 2010. DOI: https://doi.org/10.1016/j.epsr.2010.03.010
M. A. Abido, “A niched Pareto genetic algorithm for multiobjective environmental/economic dispatch”, Int. J. Electr. Power Energy Syst., vol. 25, no 2, p. 97–105, 2003. DOI: https://doi.org/10.1016/S0142-0615(02)00027-3
M. A. Abido, “A novel multiobjective evolutionary algorithm for environmental/economic power dispatch”, Electr. Power Syst. Res., vol. 65, no 1, p. 71–81, 2003. DOI: https://doi.org/10.1016/S0378-7796(02)00221-3
M. A. Abido, “Environmental/economic power dispatch using multiobjective evolutionary algorithms”, IEEE Trans. Power Syst., vol. 18, no 4, p. 1529–1537, 2003. DOI: https://doi.org/10.1109/TPWRS.2003.818693
R. Arul, G. Ravi, e S. Velusami, “An improved harmony search algorithm to solve economic load dispatch problems with generator constraints”, Electr. Eng., vol. 96, no 1, p. 55–63, 2014. DOI: https://doi.org/10.1007/s00202-012-0276-0
J. C. Leite, I. P. Abril, M. S. S. Azevedo, M. H. R. do Nascimento, N. M. Moraes, e A. M. Reis, “Multicriteria design of passive harmonic filters for industrial instalations using evolutionary computation techniques”, ITEGAM-JETIA J. Eng. Technol. Ind. Appl., vol. 1, no 3, 2015. DOI: https://doi.org/10.5935/2447-0228.20150027
Q. Qin, S. Cheng, X. Chu, X. Lei, e Y. Shi, “Solving non-convex/non-smooth economic load dispatch problems via an enhanced particle swarm optimization”, Appl. Soft Comput., vol. 59, p. 229–242, 2017. DOI: https://doi.org/10.1016/j.asoc.2017.05.034
V. K. Kamboj, A. Bhadoria, e S. K. Bath, “Solution of non-convex economic load dispatch problem for small-scale power systems using ant lion optimizer”, Neural Comput. Appl., vol. 28, no 8, p. 2181–2192, 2017. DOI: https://doi.org/10.1007/s00521-015-2148-9
J. de A. B. Júnior, M. H. R. Nascimento, C. A. O. de Freitas, J. C. Leite, e T. L. R. Carvajal, “Approach of economic-emission load dispatch using Ant Lion Optimizer”, Int. J. Adv. Eng. Res. Sci., vol. 5, no 7. DOI: https://doi.org/10.22161/ijaers.5.7.26
N. M. Moraes, U. H. Bezerra, J. L. Moya Rodríguez, M. H. R. Nascimento, e J. C. Leite, “A new approach to economic-emission load dispatch using NSGA II. Case study”, Int. Trans. Electr. Energy Syst., vol. 28, no 11, p. e2626, 2018. DOI: https://doi.org/10.1002/etep.2626
M. Basu, “Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II”, Int. J. Electr. Power Energy Syst., vol. 30, no 2, p. 140–149, 2008. DOI: https://doi.org/10.1016/j.ijepes.2007.06.009
M. Basu, “Fuel constrained economic emission dispatch using nondominated sorting genetic algorithm-II”, Energy, vol. 78, p. 649–664, 2014. DOI: https://doi.org/10.1016/j.energy.2014.10.052
A. A. El Ela, R. A. El-Sehiemy, A. M. Shaheen, e A. S. Shalaby, “Application of the crow search algorithm for economic environmental dispatch”, in 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), 2017, p. 78–83. DOI: https://doi.org/10.1109/MEPCON.2017.8301166
J. de A. B. Júnior, M. V. A. Nunes, M. H. R. Nascimento, C. A. O. de Freitas, J. C. Leite, e N. M. Moraes, “Ant Lion optimizer applied to economic emission load dispatch problems turning off the engines”, in 2018 13th IEEE International Conference on Industry Applications (INDUSCON), 2018, p. 829–836. DOI: https://doi.org/10.1109/INDUSCON.2018.8627351
S. Brini, H. H. Abdallah, e A. Ouali, “Economic dispatch for power system included wind and solar thermal energy”, Leonardo J. Sci., vol. 14, no 2009, p. 204–220, 2009.
J. Zhu, Optimization of power system operation. John Wiley & Sons, 2015. DOI: https://doi.org/10.1002/9781118887004
V. Miranda e P. S. Hang, “Economic dispatch model with fuzzy wind constraints and attitudes of dispatchers”, IEEE Trans. Power Syst., vol. 20, no 4, p. 2143–2145, 2005. DOI: https://doi.org/10.1109/TPWRS.2005.857930
A. Dhamanda, A. Dutt, S. Prakash, e A. K. Bhardwaj, “A traditional approach to solve economic load dispatch problem of thermal generating unit using MATLAB programming”, Int. J. Eng. Res. Technol. IJERT, vol. 2, 2013.
N. I. Nwulu e X. Xia, “Multi-objective dynamic economic emission dispatch of electric power generation integrated with game theory based demand response programs”, Energy Convers. Manag., vol. 89, p. 963–974, 2015. DOI: https://doi.org/10.1016/j.enconman.2014.11.001
L. Wang e C. Singh, “Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm”, Electr. Power Syst. Res., vol. 77, no 12, p. 1654–1664, 2007. DOI: https://doi.org/10.1016/j.epsr.2006.11.012
W.-T. Huang et al., “Derivation and application of a new transmission loss formula for power system economic dispatch”, Energies, vol. 11, no 2, p. 417, 2018. DOI: https://doi.org/10.3390/en11020417
M. Gitizadeh e S. Ghavidel, “Improving transient stability with multi-objective allocation and parameter setting of SVC in a multi-machine power system”, IETE J. Res., vol. 60, no 1, p. 33–41, 2014. DOI: https://doi.org/10.1080/03772063.2014.890814
M. A. El-Shorbagy e A. A. Mousa, “Chaotic particle swarm optimization for imprecise combined economic and emission dispatch problem”, Rev. Inf. Eng. Appl., vol. 4, no 1, p. 20–35, 2017. DOI: https://doi.org/10.18488/journal.79.2017.41.20.35
S. Mirjalili, “The ant lion optimizer”, Adv. Eng. Softw., vol. 83, p. 80–98, 2015. DOI: https://doi.org/10.1016/j.advengsoft.2015.01.010
I. N. Trivedi, P. Jangir, e S. A. Parmar, “Optimal power flow with enhancement of voltage stability and reduction of power loss using ant-lion optimizer”, Cogent Eng., vol. 3, no 1, p. 1208942, 2016. DOI: https://doi.org/10.1080/23311916.2016.1208942
S. Mirjalili, P. Jangir, e S. Saremi, “Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems”, Appl. Intell., vol. 46, no 1, p. 79–95, 2017. DOI: https://doi.org/10.1007/s10489-016-0825-8
L. C. Saikia e N. Sinha, “Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller”, Int. J. Electr. Power Energy Syst., vol. 80, p. 52–63, 2016. DOI: https://doi.org/10.1016/j.ijepes.2016.01.037
T. H. Khoa, P. M. Vasant, M. S. Balbir Singh, e V. N. Dieu, “Solving economic dispatch problem with valve-point effects using swarm-based mean–variance mapping optimization (MVMOS)”, Cogent Eng., vol. 2, no 1, p. 1076983, 2015. DOI: https://doi.org/10.1080/23311916.2015.1076983
S. Rajasomashekar e P. Aravindhababu, “Biogeography based optimization technique for best compromise solution of economic emission dispatch”, Swarm Evol. Comput., vol. 7, p. 47–57, 2012. DOI: https://doi.org/10.1016/j.swevo.2012.06.001
L. dos Santos Coelho e V. C. Mariani, “An efficient cultural self-organizing migrating strategy for economic dispatch optimization with valve-point effect”, Energy Convers. Manag., vol. 51, no 12, p. 2580–2587, 2010. DOI: https://doi.org/10.1016/j.enconman.2010.05.022
“Previsão do tempo local, notícias e condições | Clima subterrâneo”. https://www.wunderground.com/?cm_ven=cgi (acessado mar. 24, 2020).
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Eliton Smith dos Santos, Marcus Vinícius Alves Nunes, Jorge de Almeida Brito Júnior, Manoel Henrique Reis Nascimento, Jandecy Cabral Leite, David Barbosa de Alencar, Carlos Alberto Oliveira de Freitas
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Copyrights for articles published in IJIER journals are retained by the authors, with first publication rights granted to the journal. The journal/publisher is not responsible for subsequent uses of the work. It is the author's responsibility to bring an infringement action if so desired by the author for more visit Copyright & License.
How to Cite
Accepted 2021-06-07
Published 2021-07-01
Most read articles by the same author(s)
- Fábio Castro Jamel, Manoel Henrique Reis Nascimento, The Methodology for Photovoltaic Plant Modeling with RETScreen Software application , International Journal for Innovation Education and Research: Vol. 10 No. 11 (2022): International Journal for Innovation Education and Research
- Fabiano Franco França, Jandecy Cabral Leite, Optimization of the transfer process to the Municipalities and the Federal District - DF, of Law 13,240, of December 30, 2015 , International Journal for Innovation Education and Research: Vol. 9 No. 9 (2021): International Journal for Innovation Education and Research
- Marco Antonio dos Santos Biscaro, Thiago Barbosa Fernandes, Fabiana Rocha Pinto, David Barbosa de Alencar, Ricardo Silva Parente, Feasibility of Frying Oil After Treatment by a Biofuel Company in Manaus - Amazonas , International Journal for Innovation Education and Research: Vol. 7 No. 11 (2019): International Journal for Innovation Education and Research
- Kleber de Lima Pontes, Manoel Henrique Reis Nascimento, The Analysis of the degree of risk of R&DI projects using fuzzy logic to identify technical feasibility , International Journal for Innovation Education and Research: Vol. 10 No. 8 (2022): International Journal for Innovation Education and Research
- Ivair Rafael Costa do Santos, Manoel Henrique Reis Nascimento, David Barbosa de Alencar, Manoel S. Santos Azevedo, Antonio Estanislau Sanches, Fuzzy modeling to define corrosivity potential in oil pipelines , International Journal for Innovation Education and Research: Vol. 11 No. 1 (2023): International Journal for Innovation Education and Research
- Rilmar Pereira Gomes, Caio César Augusto do Carmo Barroncas, Caio Vinícius Pontes Araújo, Luis Gustavo Bastos Moura, Maik Antônio Costa de Lima, Jaqueline Silva de Souza Pinheiro, David Barbosa de Alencar, Consequence of Phishing during the pandemic in Manaus , International Journal for Innovation Education and Research: Vol. 10 No. 8 (2022): International Journal for Innovation Education and Research
- Hellen Lima Leite, Jandecy Cabral Leite, The importance of the environment in everyday school life , International Journal for Innovation Education and Research: Vol. 10 No. 12 (2022): International Journal for Innovation Education and Research