Use of bacteriophages to control salmonella enteritidis in fecal fermentation

Authors

  • Ana Caroline Tissiani Universidade de Passo Fundo https://orcid.org/0000-0002-9715-2283
  • Caroline Antunes do Nascimento Universidade de Passo Fundo
  • Emanuele Serro Pottker Federal University of Rio Grande do Sul
  • Aline Catarina Santos dos Passos Universidade de Passo Fundo
  • Márcio Machado Costa Universidade de Passo Fundo
  • Luciana Ruschel dos Santos Universidade de Passo Fundo
  • Laura Beatriz Rodrigues Universidade de Passo Fundo

DOI:

https://doi.org/10.31686/ijier.vol10.iss3.3485

Keywords:

Bacteriphage cocktail, Salmonella, Feces, Fecal fermentation

Abstract

Salmonella Enteritidis (SE) is one of the main serovar of Salmonella enterica involved in foodborne infections. When intestinal infection by SE requires treatments using antimicrobial, cases can be aggravated if the cause bacteria are resistant to the drugs used. A possible alternative to control these antimicrobial resistant bacteria is phagotherapy, which is characterized by the use of bacteriophages that will lead to the lysis of the target bacteria. The objective was to evaluate the in vitro efficacy of a bacteriophage cocktail for the inactivation of  SE in fecal fermentation. Fecal samples were collected from healthy donors and the fecal fermentation preparation was carried out. For the tests, a pool with three different SE isolates was used, and the bacteriophage cocktail was elaborated with the phages UPF_BP1, UPF_BP2 and UPF_BP3. Four different treatments were evaluated: the group called ASF, where the action of the bacteriophage cocktail against a pool of SE in fecal fermentation was tested; the CP1 group (positive control 1), in which only SE was inoculated in fecal fermentation; the CP2 group (positive control 2), in which the bacteriophage cocktail was inoculated in the fecal fermentation; and the CN group (negative control), containing only fecal fermentation. In all treatments the quantification of SE was performed, and in the ASF group, the quantification of phages was also performed. In the CP1 group there was a growth of 3,76 log10 UFC/mL, while in the ASF group there was a decrease in Salmonella showing 0,77 log10 UFC/mL. The results showed that the use of the bacteriophage cocktail against SE in fecal fermentation was able to reduce the amount of Salmonella in the sample. Despite not showing a significant difference (p=0.059), this in vitro sudy demonstrates the ability of phages to act against Salmonella in fecal fermentation, bringing positive evidence that corroborates the continuity of the study for future uses of phage therapy.

Downloads

Download data is not yet available.

Author Biographies

  • Ana Caroline Tissiani, Universidade de Passo Fundo

    Post-graduation program in Human Aging

  • Caroline Antunes do Nascimento, Universidade de Passo Fundo

    Post-graduation program in Bioexperimentation

  • Emanuele Serro Pottker, Federal University of Rio Grande do Sul

    Post-graduation program in Veterinary Sciences

  • Aline Catarina Santos dos Passos, Universidade de Passo Fundo

    Post-graduação program in Food Science and Technology

  • Márcio Machado Costa, Universidade de Passo Fundo

    Post-graduation program in Bioexperimentation

  • Luciana Ruschel dos Santos, Universidade de Passo Fundo

    Post-graduation program in Bioexperimentation

  • Laura Beatriz Rodrigues, Universidade de Passo Fundo

    Post-graduation program in Bioexperimentation

References

Brazilian Health Regulatory Agency. National plan for antimicrobial resistence prevention and control in health services. 2017, acessado em 20/07/2021. https://www.gov.br/anvisa/ptbr/centraisdeconteudo/publicacoes/servicosdesaude/publicacoes/national-plan-for-antimicrobial-resistance-prevention-and-control-in-health-services.

Dallal MMS, Nikkhahi F, Alimohammadi M, et al. (2019). Phage therapy as an approach to control Salmonella enterica serotype Enteritidis Infection in Mice. Journal of the Brazilian Society of Tropical Medicine, 52:e20190290. DOI: https://doi.org/10.1590/0037-8682-0290-2019

d’Humières C, Touchon M, Dion S, et al. (2019) A simple, reproducible and cost-efective procedure to analyse gut phageome: from phage isolation to bioinformatic approach. Scientific Reports, 9:11331. Doi: 10.1038/41598-019-47656-w. DOI: https://doi.org/10.1038/s41598-019-47656-w

Endersen L, Coffey A. (2020). The use of bacteriophages for food safety. Current Opinion in Food Science, 36:1-8. doi: 10.1016/j.cofs.2020.10.006. DOI: https://doi.org/10.1016/j.cofs.2020.10.006

Eng S, Pusparajah P, Mutalib NAB, Ser H, Chan K, Lee L. (2015). Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science, 8(3):284-293. DOI: 10.1080/21553769.2015.1051243 DOI: https://doi.org/10.1080/21553769.2015.1051243

Febvre HP, Rao S, Gindin M, et al. (2019) PHAGE Study: Effects of Supplemental Bacteriophage Intake on Inflammation and Gut Microbiota in Healthy Adults. Nutrients, 11(3):666. doi:10.3390/nu11030666 DOI: https://doi.org/10.3390/nu11030666

Gaspar AP, Carmen P. (2013). Loss of Culturability of Salmonella enterica sbsp. enterica Serovar Typhimurium upon Cell-cell Contact with Human Fecal Bacteria. Applied and Environmental Microbiology [Internet], 79(10):3257-63. DOI: https://doi.org/10.1128/AEM.00092-13

Gaspar AP, Carmen NP, Arjan N, Susan MG, József B, Carmen P. (2015). Interactions of Salmonella enterica subspecies enterica serovar Typhimurium with gut bacteria, 15:1-8.

Gutiérrez B, Domingo-Calap P. (2020). Phage therapy in Gastrointestinal Diseases. Microorganisms, 8:1420. doi: 10.3390/microorganisms8091420. DOI: https://doi.org/10.3390/microorganisms8091420

Huang Y, Suyemoto M, Garner CD, et al. (2008). Formate acts as a diffusible signal to induce Salmonella invasion. J. Bacteriol, 190:4233–4241. DOI: https://doi.org/10.1128/JB.00205-08

Hungaro HM, Mendonça RCS, Gouvêa DM. (2013). Use of bacteriophages to reduce Salmonella in chicken skin in comparasion with chemical agents. Food Research International, 52(1):75-81. doi: 10.1016/j.foodres.2013.02.032 DOI: https://doi.org/10.1016/j.foodres.2013.02.032

Hsu BB, Gibson TE, Yeliseyev V, et al. (2019). Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model. Cell Host Microbe, 25(6):803‐814.e5. doi:10.1016/j.chom.2019.05.001 DOI: https://doi.org/10.1016/j.chom.2019.05.001

Karin M, Felix B, Christian W, et al. (2018). A Wake-Up Call: We Need Phage Therapy Now. Viruses, 5;10(12):688. doi: 10.3390/v10120688. DOI: https://doi.org/10.3390/v10120688

Kristin AV, Alan RB, Alessandro C, et al. (2015). Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutrition Research Reviews, 28, 42–66. doi:10.1017/S0954422415000037 DOI: https://doi.org/10.1017/S0954422415000037

Marzanna Ł, Beata WD, Ewa JM, et al. (2017). Bacteriophages in the gastrointestinal tract and their implication. Gut Pathog, 9:44. doi: 10.1186/s13099-017-0196-7 DOI: https://doi.org/10.1186/s13099-017-0196-7

Moelling K, Broecker F, Willy C. (2018). A Wake-Up Call: We Need Phage Therapy Now. Viruses, 10(12):688. doi:10.3390/v10120688 DOI: https://doi.org/10.3390/v10120688

Morel CM, Lindahl O, Harbarth S. (2020) Industry incentives and antibiotic resistance: an introduction to the antibiotic susceptibility bonus. J Antibiot. doi: 10.1038/s41429-020-0300-y DOI: https://doi.org/10.1038/s41429-020-0300-y

Nair VTD, Venkitanarayanan K, Kollanoor JA (2018). Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control. Foods,7(10):167. doi:10.3390/foods7100167 DOI: https://doi.org/10.3390/foods7100167

Oliveira, A.P., Webber, B., Pottker, E.S., Daroit, L., dos Santos, L.R., Rodrigues, L.B. (2019). Adesão de Salmonella Enteritidis envolvida em surtos alimentares sob diferentes superfícies e condições ambientais. Scientia Plena, 15(11). Doi: https://doi.org/10.14808/sci.plena.2019.116101 DOI: https://doi.org/10.14808/sci.plena.2019.116101

Pottker, E. S., Webber, B., Cibulski, S., Zanella, R., Girardi, V., Núncio, A. S. P., Santos, L. R. dos, Nascimento, V. P. do, & Rodrigues, L. B. (2020). Genomics and Phenotypical Characterization of Two New Lytic Bacteriophages for Biocontrol of Salmonella enterica. Microbiology Research Journal International, 30(10), 93-105. https://doi.org/10.9734/mrji/2020/v30i1030277 DOI: https://doi.org/10.9734/mrji/2020/v30i1030277

Pradhan D, Devi Negi V. (2019). Stress-induced adaptations in Salmonella: A ground for shaping its pathogenesis. Microbiol Res, 229:126311. doi:10.1016/j.micres.2019.126311 DOI: https://doi.org/10.1016/j.micres.2019.126311

Reem A. Youssef, R.A; Abbas, A.M; et al. (2021). Serotyping and Antimicrobial Resistance Profile of Enteric Nontyphoidal Salmonella Recovered from Febrile Neutropenic Patients and Poultry in Egypt. Antibiotics, 10(493). DOI: https://doi.org/10.3390/antibiotics10050493

Rodrigues LB et al. (2009) Avaliação da hidrofobicidade e da formação de biofilme em poliestireno por Salmonella Heidelberg isoladas de abatedouro avícola. Acta Scientiae Veterinariae, (37): 225–230. DOI: https://doi.org/10.22456/1679-9216.16333

Ser HL, Letchumanan V, Goh BH, et al. The Use of Fecal Microbiome Transplant in Treating Human Diseases: Too Early for Poop? Front. Microbiol. 2021, 12,519836. doi 103389/fmicb.2021.519836 DOI: https://doi.org/10.3389/fmicb.2021.519836

Sillankorva S. (2018). Isolation of Bacteriophages for Clinically Relevant Bacteria. Methods Mol Biol, 1693:23-30. doi: 10.1007/978-1-4939-7395-8_3. PMID: 29119429. DOI: https://doi.org/10.1007/978-1-4939-7395-8_3

Silva FAS. ASSISTAT: Versão 7.7 beta. DEAG-CTRN-UFCG – Atualizado em 01 de abril de 2014. [Internet]. [cited 2015 fev 10]. Available from: .

Sutton TDS, Colin H. (2019). Gut Bacteriophages: Current Understanding and Challeges. Front. Endocrionol, 10:784. doi: 10.3389/fendo.2019.00784. DOI: https://doi.org/10.3389/fendo.2019.00784

Wang X, Gibson GR, Costabile A, et al. (2019) Prebiotic Supplementation of In Vitro Fecal Fermentations Inhibits Proteolysis by Gut Bacteria, and Host Diet Shapes Gut Bacterial Metabolism and Response to Intervention. Prebiotic Supplementation of In Vitro Fecal Fermentations Inhibits Proteolysis by Gut Bacteria, and Host Diet Shapes Gut Bacterial Metabolism and Response to Intervention, 85(9):e02749-18. doi:10 .1128/AEM.02749-18. DOI: https://doi.org/10.1128/AEM.02749-18

Xin H, Ma T, Xu Y, et al. (2021). Charaterization of fecal branched-chain fatty acid profiles and their associations with fecal microbiota in diarrheic and healthy dairy calves. Journal of dairy science, 140(2):2290-2301. doi: 10.3168/jds.2020-18825. DOI: https://doi.org/10.3168/jds.2020-18825

Zenghai J, Paudyal N, Xu Y, Deng T, Li F, Pan H, Peng X et al. (2019). “Antibiotic Resistance Profiles of Salmonella Recovered From Finishing Pigs and Slaughter Facilities in Henan, China.” Frontiers in microbiology, 10:1513. doi:10.3389/fmicb.2019.01513 DOI: https://doi.org/10.3389/fmicb.2019.01513

Downloads

Published

2022-03-01

How to Cite

Tissiani, A. C., do Nascimento, C. A. ., Pottker, E. S., Passos, A. C. S. dos, Costa, M. M., Santos, L. R. dos, & Rodrigues, L. B. (2022). Use of bacteriophages to control salmonella enteritidis in fecal fermentation. International Journal for Innovation Education and Research, 10(3), 22-32. https://doi.org/10.31686/ijier.vol10.iss3.3485
Received 2021-09-28
Accepted 2021-10-10
Published 2022-03-01

Most read articles by the same author(s)